
About the generalised star-height problem and profinite identities

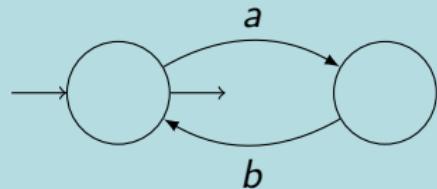
Laure Daviaud

City, University of London

University of York, 22/01/2020

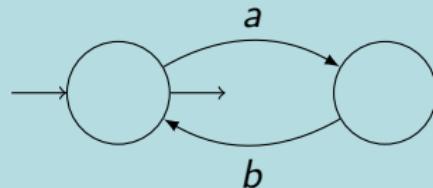
Rational languages

AUTOMATA



Rational languages

AUTOMATA

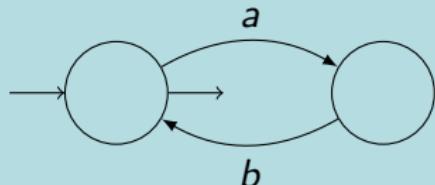


Rational languages

$$(ab)^*$$

RATIONAL EXPRESSIONS

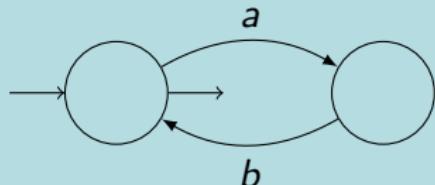
$MSO[<]$ on finite words



- starts with an a
- ends with a b
- the successor of an a is a b
- the successor of a b is an a

Rational languages

$(ab)^*$



MSO[<] on finite words

- starts with an a
- ends with a b
- the successor of an a is a b
- the successor of a b is an a

Rational languages

Finite monoids

$(ab)^*$

$\{a, b\}^* \xrightarrow{\varphi} M$

- $M = \{1, a, b, ab, ba, 0\}$
- $a.b = ab, a.a = 0, \dots$

$\varphi^{-1}(ab) = (ab)^*$

Star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^*

Star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[= \emptyset^c]$

Star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[= \emptyset^c]$
- $(ab)^*$

Star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[= \emptyset^c]$
- $(ab)^*$ is star-free $[= (bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c]$

Star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[= \emptyset^c]$
- $(ab)^*$ is star-free $[= (bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c]$
- $((ab)^*a((b^ca^*)^c)^*a(a(ba)^*)^c)^*aaab(bab)^c(ab)^*$

Star-free languages

The set of the **star-free languages** is the smallest set:

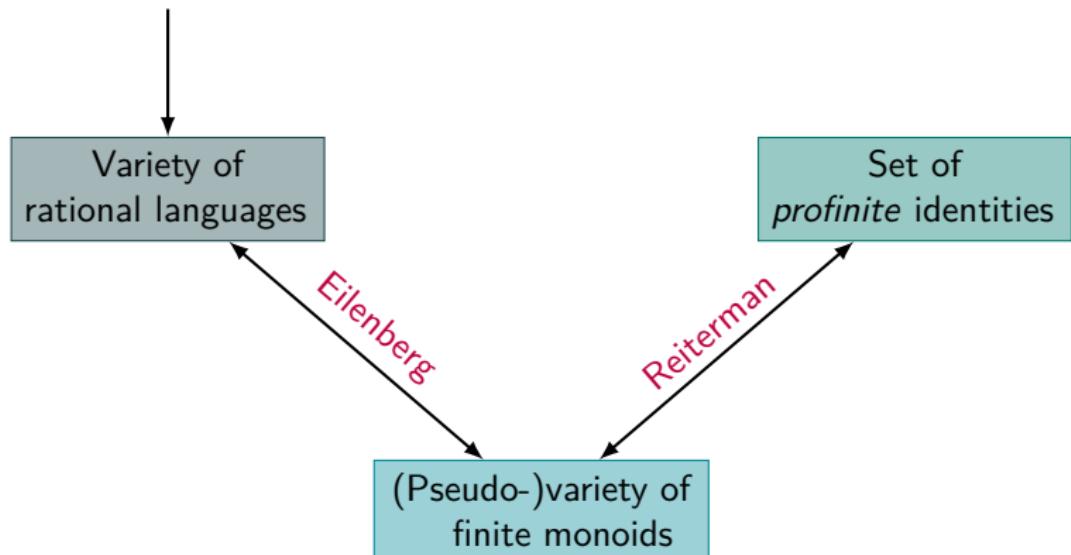
- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[= \emptyset^c]$
- $(ab)^*$ is star-free $[= (bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c]$
- $((ab)^*a((b^ca^*)^c)^*a(a(ba)^*)^c)^*aaab(bab)^c(ab)^*$
- $(aa)^*$

Varieties and identities

Class of star-free languages



Varieties of languages

A **variety of languages** is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties of languages

A **variety of languages** is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

- for each alphabet A_i , $\nu(A_i)$ is a **boolean algebra** over A_i
(closed under finite union, intersection, complement)

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties of languages

A **variety of languages** is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

- for each alphabet A_i , $\nu(A_i)$ is a **boolean algebra** over A_i
(closed under finite union, intersection, complement)
- for each alphabet A_i , $\nu(A_i)$ is **closed under quotient**:
if $L \in \nu(A_i)$ and $u \in A_i^*$ then Lu^{-1} and $u^{-1}L \in \nu(A_i)$

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties of languages

A **variety of languages** is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

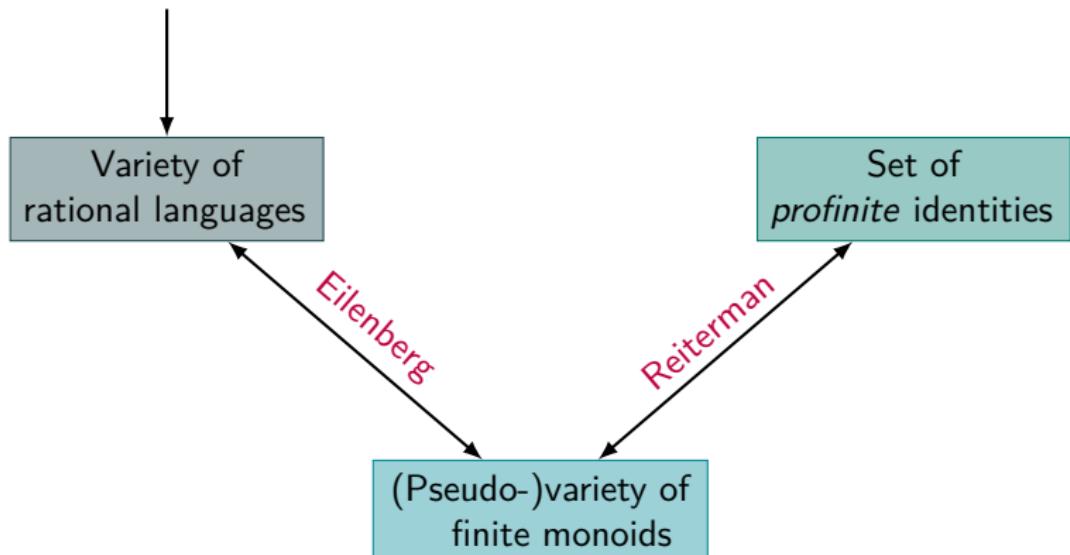
- for each alphabet A_i , $\nu(A_i)$ is a **boolean algebra** over A_i (closed under finite union, intersection, complement)
- for each alphabet A_i , $\nu(A_i)$ is **closed under quotient**: if $L \in \nu(A_i)$ and $u \in A_i^*$ then Lu^{-1} and $u^{-1}L \in \nu(A_i)$
- it is **closed under inverse image**: for each monoid morphism $\varphi : A_i^* \rightarrow A_j^*$, $L \in \nu(A_j)$ implies $\varphi^{-1}(L) \in \nu(A_i)$

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties and identities

Class of star-free languages



A distance on the set of finite words

A distance on the set of finite words

$$d(u, v) = 2^{-n}$$

where n : size of a smallest deterministic complete automaton \mathcal{A}
such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

A distance on the set of finite words

$$d(u, v) = 2^{-n}$$

where n : size of a smallest deterministic complete automaton \mathcal{A}
such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Or n : size of a smallest monoid that separates u and v .

A distance on the set of finite words

$$d(u, v) = 2^{-n}$$

where n : size of a smallest deterministic complete automaton \mathcal{A}
such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Or n : size of a smallest monoid that separates u and v .

d is an ultrametric distance:

- $d(u, v) = 0$ iff $u = v$
- $d(u, v) = d(v, u)$
- $d(u, v) \leq \max(d(u, w), d(w, v))$

How far are those pairs of words?

$d(u, v) = 2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

How far are those pairs of words?

$d(u, v) = 2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?

How far are those pairs of words?

$d(u, v) = 2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?
At least $2^{-(|u|+1)}$

How far are those pairs of words?

$d(u, v) = 2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?

At least $2^{-(|u|+1)}$

Example 2: $a \in A$ - a^{99} and a^{100} ?

How far are those pairs of words?

$d(u, v) = 2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?

At least $2^{-(|u|+1)}$

Example 2: $a \in A$ - a^{99} and a^{100} ?

$\frac{1}{4}$

How far are those pairs of words?

$d(u, v) = 2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?

At least $2^{-(|u|+1)}$

Example 2: $a \in A$ - a^{99} and a^{100} ?

$\frac{1}{4}$

Example 3: $u \in A^*$, $n \in \mathbb{N}$ - $u^{n!}$ and $u^{(n+1)!}$?

The profinite world

Definition

Profinite monoid $\widehat{A^*}$:

completion of A^* with respect to the distance d .

- Monoid if u and v sequences of words, $(u.v)_n = u_nv_n$
- Metric space
- A^* dense subset
- Compact

VIP (very important profinite) words

VIP (very important profinite) words

Idempotent power of $u \in A^*$

$$u^\omega = \lim_{n \rightarrow \infty} u^{n!}$$

Identities

Profinite identity: $u = v$ with $u, v \in \widehat{A}^*$.

Profinite identity: $u = v$ with $u, v \in \widehat{A}^*$.

Rational language $L \in A^*$ $\longrightarrow \overline{L} \in \widehat{A}^*$ is the closure of L .

Profinite identity: $u = v$ with $u, v \in \widehat{A}^*$.

Rational language $L \in A^*$ $\longrightarrow \bar{L} \in \widehat{A}^*$ is the closure of L .

A language L satisfies a profinite identity $u = v$ with $u, v \in \widehat{A}^*$, if for all profinite words w, w' , $wuw' \in \bar{L}$ if and only if $www' \in \bar{L}$.

Profinite identity: $u = v$ with $u, v \in \widehat{A}^*$.

Rational language $L \in A^*$ $\longrightarrow \bar{L} \in \widehat{A}^*$ is the closure of L .

A language L satisfies a profinite identity $u = v$ with $u, v \in \widehat{A}^*$, if for all profinite words w, w' , $wuw' \in \bar{L}$ if and only if $www' \in \bar{L}$.

Example: for all $u, v \in \{a, b\}^*$ such that $|u|_a = |v|_a$ and $|u|_b = |v|_b$, $u \in L$ if and only if $v \in L$

Profinite identity: $u = v$ with $u, v \in \widehat{A}^*$.

Rational language $L \in A^*$ $\longrightarrow \bar{L} \in \widehat{A}^*$ is the closure of L .

A language L satisfies a profinite identity $u = v$ with $u, v \in \widehat{A}^*$, if for all profinite words w, w' , $wuw' \in \bar{L}$ if and only if $www' \in \bar{L}$.

Example: for all $u, v \in \{a, b\}^*$ such that $|u|_a = |v|_a$ and $|u|_b = |v|_b$, $u \in L$ if and only if $v \in L$

Commutative languages: If $wuvw' \in L$ then $wvuw' \in L$

Profinite identity: $u = v$ with $u, v \in \widehat{A}^*$.

Rational language $L \in A^*$ $\longrightarrow \bar{L} \in \widehat{A}^*$ is the closure of L .

A language L satisfies a profinite identity $u = v$ with $u, v \in \widehat{A}^*$, if for all profinite words w, w' , $wuw' \in \bar{L}$ if and only if $www' \in \bar{L}$.

Example: for all $u, v \in \{a, b\}^*$ such that $|u|_a = |v|_a$ and $|u|_b = |v|_b$, $u \in L$ if and only if $v \in L$

Commutative languages: If $wuvw' \in L$ then $wvuw' \in L$
 $ab = ba$

Languages with a zero

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)

$$|A| \geq 2$$

u_0, u_1, \dots an enumeration of the words of A^*

$$v_0 = u_0, \quad v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$$

$$\rho_A = \lim_{n \rightarrow \infty} v_n$$

Languages with a zero

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)

$$|A| \geq 2$$

u_0, u_1, \dots an enumeration of the words of A^*

$$v_0 = u_0, \quad v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$$

$$\rho_A = \lim_{n \rightarrow \infty} v_n$$

Languages with a sink state: $\rho_A u = u \rho_A = \rho_A$

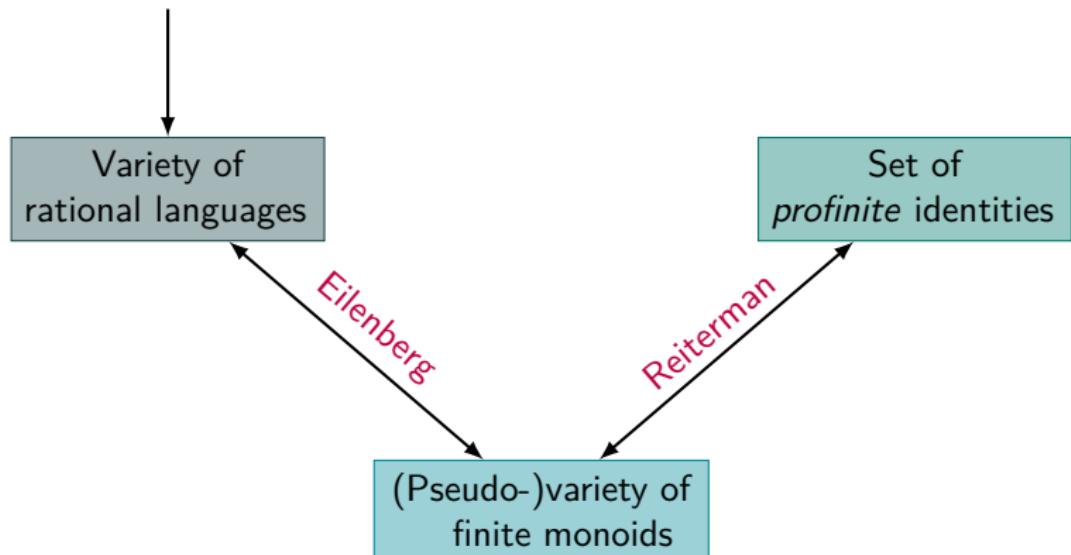
Correspondance

Theorem

A class of languages is a variety if and only if it is defined by a set of profinite identities.

Varieties and identities

Class of star-free languages



What about the star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

What about the star-free languages

The set of the **star-free languages** is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Theorem [Schützenberger]

A language is **star-free** if and only if it satisfies the profinite identity $x^{\omega+1} = x^\omega$.

What about the star-free languages

The set of the **star-free languages** is the smallest set:

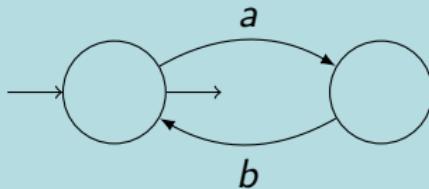
- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Theorem [Schützenberger]

A language is **star-free** if and only if it satisfies the profinite identity $x^{\omega+1} = x^\omega$.

→ $(ab)^*$ is star-free.

→ $(aa)^*$ is not star-free.



Counter-free automata

(McNaughton-Papert)

Star-free languages

Smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

RATIONAL EXPRESSIONS

$FO[<]$ on finite words

(McNaughton-Papert)
(Schützenberger)

Aperiodic monoids

$$x^\omega = x^{\omega+1}$$

ALGEBRA

The generalised star-height problem

- One can decide if a given rational language is **star-free**.
- $(aa)^*$ is not star-free.

The generalised star-height problem

- One can decide if a given rational language is **star-free**.
- $(aa)^*$ is not star-free.
- **Generalised star-height**: minimal number of nested stars in a generalised expression $(\cup, \cdot, ^c, ^*)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

The generalised star-height problem

- One can decide if a given rational language is **star-free**.
- $(aa)^*$ is not star-free.
- **Generalised star-height**: minimal number of nested stars in a generalised expression $(\cup, \cdot, ^c, ^*)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

→ OPEN : we do not even know if there exist a rational language with star-height at least 2.

Equations

Definition

Given two profinite words u, v , a rational language L satisfies

$$u \rightarrow v$$

if $u \in \bar{L}$ implies $v \in \bar{L}$

$$a, b \in A$$

Equation $ab \rightarrow aba$

$$\{L \subseteq A^* \mid ab \notin L\} \cup \{L \subseteq A^* \mid ab, aba \in L\}$$

Equations

Definition

Given two profinite words u, v , a rational language L satisfies

$$u \leftrightarrow v$$

if $u \in \bar{L}$ if and only if $v \in \bar{L}$

$$a, b \in A$$

Equation $ab \leftrightarrow aba$

$$\{L \subseteq A^* \mid ab, aba \notin L\} \cup \{L \subseteq A^* \mid ab, aba \in L\}$$

Equations

Definition

Given two profinite words u, v , a rational language L satisfies

$$u \leqslant v$$

if for all $w, w' \in \widehat{A}^*$, $wuw' \in \bar{L}$ implies $www' \in \bar{L}$

$$a, b \in A$$

$$\text{Equation } ab \leqslant aba$$

$$\{L \subseteq A^* \mid \text{for all } w, w' \in A^*, \text{ if } wabw' \in L \text{ then } wabaw' \in L\}$$

Equations

Definition

Given two profinite words u, v , a rational language L satisfies

$$u = v$$

if for all $w, w' \in \widehat{A^*}$, $wuw' \in \bar{L}$ if and only if $ww' \in \bar{L}$

$$a, b \in A$$

$$\text{Equation } ab = aba$$

$$\{L \subseteq A^* \mid \text{for all } w, w' \in A^*, wabw' \in L \text{ iff } wabaw' \in L\}$$

Theorem [Gehrke, Grigorieff, Pin 2008]

Classes of rational languages

- Lattice (union, intersection): \rightarrow
- Boolean algebra (lattice, complement): \leftrightarrow
- Lattice closed under quotient: \leqslant
- Boolean algebra closed under quotient: $=$

quotient : $u^{-1}Lv^{-1} = \{w \mid uwv \in L\}$

Equations for u^* [joint work with C.Paperman]

$$P_u = \bigcup_{p \text{ prefix of } u} u^* p \quad \text{and} \quad S_u = \bigcup_{s \text{ suffix of } u} s u^*$$

$$x^\omega y^\omega = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx \quad (E_1)$$

$$x^\omega y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x \quad (E_2)$$

$$yx^\omega = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x \quad (E_3)$$

$$x^\omega \leqslant 1 \text{ for } x \in A^* \quad (E_4)$$

$$x^\ell \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^*, \ell > 0 \quad (E_5)$$

$$x \rightarrow x^\ell \text{ for } x \in A^*, \ell > 0 \quad (E_6)$$

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

DECIDABLE

Equations for u^* [joint work with C.Paperman]

$$P_u = \bigcup_{p \text{ prefix of } u} u^* p \quad \text{and} \quad S_u = \bigcup_{s \text{ suffix of } u} s u^*$$

$$x^\omega y^\omega = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx \quad (E_1)$$

$$x^\omega y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x \quad (E_2)$$

$$yx^\omega = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x \quad (E_3)$$

$$x^\omega \leqslant 1 \text{ for } x \in A^* \quad (E_4)$$

$$x^\ell \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^*, \ell > 0 \quad (E_5)$$

$$x \rightarrow x^\ell \text{ for } x \in A^*, \ell > 0 \quad (E_6)$$

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

DECIDABLE Lattice

Equations for u^* [joint work with C.Paperman]

$$P_u = \bigcup_{p \text{ prefix of } u} u^* p \quad \text{and} \quad S_u = \bigcup_{s \text{ suffix of } u} s u^*$$

$$x^\omega y^\omega = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx \quad (E_1)$$

$$x^\omega y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x \quad (E_2)$$

$$yx^\omega = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x \quad (E_3)$$

$$x^\omega \leqslant 1 \text{ for } x \in A^* \quad (E_4)$$

$$x^\ell \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^*, \ell > 0 \quad (E_5)$$

$$x \rightarrow x^\ell \text{ for } x \in A^*, \ell > 0 \quad (E_6)$$

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

DECIDABLE Lattice closed under quotients

Equations for u^* [joint work with C.Paperman]

$$P_u = \bigcup_{p \text{ prefix of } u} u^* p \quad \text{and} \quad S_u = \bigcup_{s \text{ suffix of } u} s u^*$$

$$x^\omega y^\omega = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx \quad (E_1)$$

$$x^\omega y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x \quad (E_2)$$

$$yx^\omega = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x \quad (E_3)$$

$$x^\omega \leqslant 1 \text{ for } x \in A^* \quad (E_4)$$

$$x^\ell \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^*, \ell > 0 \quad (E_5)$$

$$x \rightarrow x^\ell \text{ for } x \in A^*, \ell > 0 \quad (E_6)$$

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

DECIDABLE Boolean algebra closed under quotients

Equations for u^* [joint work with C.Paperman]

$$P_u = \bigcup_{p \text{ prefix of } u} u^* p \quad \text{and} \quad S_u = \bigcup_{s \text{ suffix of } u} s u^*$$

$$x^\omega y^\omega = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx \quad (E_1)$$

$$x^\omega y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x \quad (E_2)$$

$$yx^\omega = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x \quad (E_3)$$

$$x^\omega \leqslant 1 \text{ for } x \in A^* \quad (E_4)$$

$$x^\ell \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^*, \ell > 0 \quad (E_5)$$

$$x \rightarrow x^\ell \text{ for } x \in A^*, \ell > 0 \quad (E_6)$$

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

DECIDABLE Boolean algebra

The Boolean algebra

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

The Boolean algebra

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

$$r \equiv_m s \text{ if and only if } \gcd(r, m) = \gcd(s, m)$$

$$(u^m)^* u^r \subseteq L \text{ if and only if } (u^m)^* u^s \subseteq L$$

The Boolean algebra

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

$$r \equiv_m s \text{ if and only if } \gcd(r, m) = \gcd(s, m)$$

$$(u^m)^* u^r \subseteq L \text{ if and only if } (u^m)^* u^s \subseteq L$$

$$2 \equiv_6 4 \text{ since } \gcd(2, 6) = 2 = \gcd(4, 6)$$

$$(u^6)^* u^2 \subseteq L \text{ if and only if } (u^6)^* u^4 \subseteq L$$

The Boolean algebra

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

$r \equiv_m s$ if and only if $\gcd(r, m) = \gcd(s, m)$

$(u^m)^* u^r \subseteq L$ if and only if $(u^m)^* u^s \subseteq L$

$x^\alpha \leftrightarrow x^\beta$ for α and β representing sequences of integers $(km + r)_k$ and $(km + s)_k$ with $r \equiv_m s \dots$

The Boolean algebra

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Equivalence relation over the integers

$r \equiv_m s$ if and only if $\gcd(r, m) = \gcd(s, m)$

$(u^m)^* u^r \subseteq L$ if and only if $(u^m)^* u^s \subseteq L$

$x^\alpha \leftrightarrow x^\beta$ for α and β profinite numbers in $\widehat{\mathbb{N}} = \widehat{\{a\}}^*$

satisfying some specific conditions...

The Boolean algebra

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

$$1 \ a \ a^2 \ a^3 \ a^4 \ a^5 \ a^6 \ a^7 \ a^8 \ a^9 \ a^{10} \ a^{11} \ a^{12} \ a^{13} \ a^{14} \ \dots$$

Γ is the set of all the pairs of profinite numbers $(dz^{\mathcal{P}}, dpz^{\mathcal{P}})$ s.t.:

- \mathcal{P} is a cofinite sequence of prime numbers $\{p_1, p_2, \dots\}$
- $z^{\mathcal{P}} = \lim_n (p_1 p_2 \dots p_n)^{n!}$
- $p \in \mathcal{P}$
- if q divides d then $q \notin \mathcal{P}$

$$x^\alpha \leftrightarrow x^\beta \text{ for all } (\alpha, \beta) \in \Gamma \quad (E_7)$$

The generalised star-height problem

- One can decide if a given rational language is **star-free**.
- $(aa)^*$ is not star-free.
- **Generalised star-height**: minimal number of nested stars in a generalised expression $(\cup, \cdot, ^c, ^*)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

→ OPEN : we do not even know if there exist a rational language with star-height at least 2.