

The diameter of endomorphism monoids

Thomas Quinn-Gregson
August 2023

Joint work with Victoria Gould (G), James East (E), Craig Miller (M), and Nik Ruškuc (R).

Right congruences

Definition

A **right congruence** on a semigroup S is an equivalence relation ρ such that for every $a, b, c \in S$,

$$a \rho b \Rightarrow ac \rho bc.$$

- If $U \subseteq S \times S$, then the **right congruence generated by U** , denoted $\langle U \rangle$, is the smallest right congruence containing U .

Definition

A semigroup S is **right Noetherian** if every right congruence is finitely generated (f.g.).

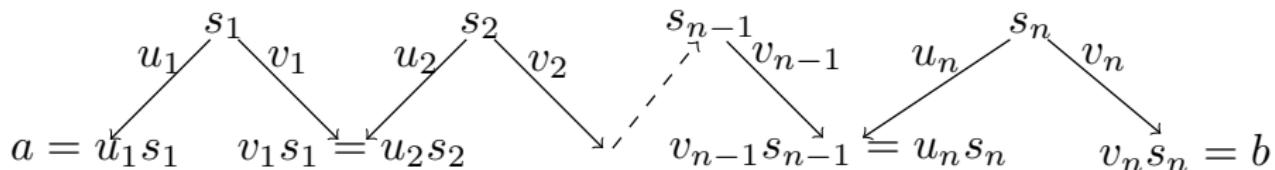
Generating right congruences

Lemma (Kilp, Knauer, Mikhalev, 2000)

Let $U \subseteq S \times S$. Then $a \langle U \rangle b$ if and only if either $a = b$ or there exists a U -path from a to b , that is,

$$a = u_1 s_1, v_1 s_1 = u_2 s_2, \dots, v_n s_n = b$$

where $(u_i, v_i) \in U \cup U^{-1}$ and $s_i \in S^1$.



Pseudo-finite semigroups

- Pseudo-finite: the semigroup finiteness condition of the universal right congruence ω_r^S being finitely generated and there being a bound on the length of sequences required to relate any two elements.
- First studied by Dales and White in 2017 with regards to Banach algebras.
- Boring property for groups: pseudo-finite groups are finite.
- Kobyashi (2007): ω_r^M is f.g. if and only if M is of type right-FP1.
- I first joined the project for “Semigroups with finitely generated universal left congruence” (2019, Dandan, G, Q-G, Zenab).
- Clear picture for key classes including inverse semigroups, completely regular, and Rees matrix.
- Far more complex than first thought: there exists pseudo-finite regular semigroups without a completely simple minimal ideal “On minimal ideals in pseudo-finite semigroups” (2022, G,M, Q-G, R).
- Pseudo-finite transformation semigroups studied in “On the diameter of semigroups of transformations and partitions” (2023, E,G,Q-G,R).

Diameter

Lemma

Let S be a semigroup. Then ω_r^S is f.g. if and only if there exists a subset U of $S \times S$ such that for any $a, b \in S$, we have $a = b$ or there exists a U -path from a to b , that is,

$$a = u_1 s_1, v_1 s_1 = u_2 s_2, \dots, v_n s_n = b$$

where $(u_i, v_i) \in U$ and $s_i \in S^1$.

Definition

Let S be a semigroup in which ω_r^S is f.g.

- If $\omega_r^S = \langle U \rangle$, then define $D_r(S; U) = \sup\{\text{length of the smallest } U\text{-path from } a \text{ to } b : a, b \in S\}$.
- The **right diameter of S** is then $D_r(S) = \min\{D_r(S; U) : \omega_r^S = \langle U \rangle, |U| < \infty\}$.
- If $D_r(S)$ is finite, then S is called **right pseudo-finite**.

Diameter 1

- Having right diameter 1 is equivalent to the well-studied notion of the diagonal right act being f.g.
- For a semigroup S , the diagonal right S -act is the set $S \times S$ under the right action given by $(a, b)c = (ac, bc)$.
- First studied implicitly by Bulman-Fleming and McDowell (1990), and formalized by Robertson et al (2001).
- Gallagher and N (2005) studied this property for many natural semigroups, including subsemigroups of \mathcal{T}_X , endomorphisms of chains, and endomorphisms of independence algebras.
- Also considered the stronger property of the diagonal right act being **monogenic**, i.e. there exists $a, b \in S$ such that $S \times S = (a, b)S$.

Hierarchy of conditions

ω_r^S is finitely generated.

↑

S is pseudo-finite.

↑

$D_r(S) = 1$

⇓

The diagonal right S -act is finitely generated.

↑

The diagonal right S -act is monogenic.

Problem (Meta)

Which “characteristics” of a semigroup determines its left/right diameter.

- A “characteristic” of a semigroup could mean the existence of special elements, its properties (such as algebraic identities), or properties inherited from some other structure.
- Which characteristic is best suited for building a global theory of pseudo-finite semigroups?

Previous methods

Previous work can be broadly broken down into two methods depending on if we view a semigroup as a transformation semigroup or abstractly (e.g. variety of semigroups).

Transformation semigroups: Discussed in my talk last summer.

- **Pro:** Able to manipulate concrete elements to give bounds on the diameter. Great success when a degree of transitivity is added.
- **Con:** Global structure often mysterious or unhelpful.

Abstractly: Which properties hold for all semigroups of a particular diameter? Most widely used method.

- **Pro:** Global structure obtained by restricting to semigroups satisfying certain conditions. E.g. no infinite diameter 1 semigroup can be commutative (Gallagher).
- **Con:** Elements are not concrete, and so can be harder to manipulate.

- Restrict to transformation monoids which have an inherited global structure to keep the benefits of both methods: Endomorphism monoids!

Definition

A **(first order) structure** $\mathbb{A} = (A; \mathfrak{R})$ is a set A together with a collection \mathfrak{R} of basic relations and functions defined on A .

- A semigroup is considered as a set together with a binary (associative) operation.
- Both partially ordered sets (posets) and graphs can be considered as sets together with a single binary relation.
- A semilattice can also be considered as the structure $(Y; \wedge, \leq)$ where $a \leq b$ if and only if $a \wedge b = a$.

Endomorphisms

Definition

Let $\mathbb{A} = (A; \mathfrak{R})$ be a structure. Then a map $\theta: A \rightarrow A$ is an **endomorphism** of \mathbb{A} if it preserves each function and relation from \mathfrak{R} , that is, for each function $f \in \mathfrak{R}$, relation $R \in \mathfrak{R}$, and $a_1, \dots, a_n \in A$,

$$\begin{aligned} ((a_1, \dots, a_n)f)\theta &= (a_1\theta, \dots, a_n\theta)f, \\ (a_1, \dots, a_n) \in R &\Rightarrow (a_1\theta, \dots, a_n\theta) \in R. \end{aligned}$$

The set of all endomorphisms of \mathbb{A} is denoted $\text{End}(\mathbb{A})$, and forms a submonoid of \mathcal{T}_A .

E.g. If $\mathcal{Y} = (Y; \wedge, \leq)$ is a semilattice then $\theta \in \text{End}(\mathcal{Y})$ if

$$(x \wedge y)\theta = x\theta \wedge y\theta \text{ and } x \leq y \Rightarrow x\theta \leq y\theta.$$

Endomorphisms

Warning: How we consider our structure (its signature) can change its endomorphism monoid. E.g. If Y is a semilattice then:

$$\text{End}(Y; \wedge) = \text{End}(Y; \wedge, \leq) \subseteq \text{End}(Y; \leq).$$

Endomorphisms

The philosophy behind this method is that the properties of $\text{End}(\mathbb{A})$ often depend solely on those of the underlying structure \mathbb{A} , which is easier to work with.

- **Pro:** Global structure inherited from \mathbb{A} ?
- **Pro:** Local structure (concrete maps) inherited from \mathbb{A} and the *closure* property.
- **Con:** Not all transformation monoids are the endomorphism monoid of some structure.

Theorem

Given a monoid monoid $M \leq \mathcal{T}_X$, t.f.a.e.:

- (1) M is the endomorphism monoid of some (first order) structure;
- (2) M is the endomorphism monoid of some relational structure;
- (3) M is closed in the topology of pointwise convergence. That is, whenever $\alpha \in \mathcal{T}_X$ is such that for each finite $A \subseteq X$ there exists $\gamma \in M$ with $\alpha|_A = \gamma|_A$ then $\alpha \in M$.

Consequence: Suffices to consider relational structures!

Original motivation

- Tackling the problem via endomorphism monoids was briefly examined by Gallagher and R. in the diameter 1 case.
- (Mostly) classified those independence algebras with endomorphism monoids being of diameter 1.
- No infinite chain (totally ordered set) can have endomorphism monoid of left or right diameter 1.

Problem (Motivation)

Determine why chains cannot have endomorphisms of diameter 1 (or stronger). What determines their left/right diameter?

Chains Part 1: Explaining the lower bound of 2.

Left and right units

- The diagonal right act of \mathcal{T}_X is monogenic and generated by any injective maps α, β with disjoint images (Gallagher, R).
- The injective maps of \mathcal{T}_X correspond to its *right units* i.e. elements $a \in S$ such that there exists $b \in S$ with $ab = 1$.
- The submonoid of right units of a monoid is the \mathcal{R} -class R_1 of the identity.
- The **group of units** is the \mathcal{H} -class H_1 .

Proposition

$R_1 = H_1 \Leftrightarrow L_1 = H_1 \Leftrightarrow J_1 = H_1 \Leftrightarrow S$ does not contain a copy of the bicyclic monoid $B = \langle a, b \mid ab = 1 \rangle$.

A monoid satisfying one (and hence all) of these conditions is called **Dedekind-finite**. E.g. \mathcal{T}_X is not Dedekind-finite.

Lemma (EGMQ-GR)

A Dedekind-finite monoid has right/left diameter 1 if and only if it is finite.

Left and right units

Problem

Does the right diameter of $\text{End}(\mathbb{A})$ depend only on its right units?

- We restrict our attention to relational structures in which there is an easy way to pass from the endomorphisms to its elements.

Reflexive structures

- Given an n -ary relation R of a set A , we define an **R -loop** to be an element $x \in A$ with $(x, x, \dots, x) \in R$.
- We call R **reflexive** if each $x \in A$ is an R -loop.
- A relational structure \mathbb{A} is called **reflexive** if each of its basic relations are reflexive.

Lemma

If \mathbb{A} is reflexive then the constant map $c_x: A \rightarrow A$ ($a \mapsto x$) is an endomorphism of \mathbb{A} for each $x \in A$. Moreover, $\mathcal{C}_A = \{c_x : x \in A\}$ is the minimum ideal of $\text{End}(\mathbb{A})$.

Example

Posets $(P; \leq)$, chains, prosets, looped graphs, and bands(!) are all reflexive.

Posets

We restrict to posets - the results extend to any reflexive structure (but with added ugliness).

Proposition (EGMQ-GR)

Let \mathcal{P} be a non-trivial poset. If $S = \text{End}(\mathbb{P})$ has monogenic diagonal right act then there exists $\alpha, \beta \in R_1$ such that their images are unrelated under \leq , i.e. there exists no $x, y \in P$ with $x\alpha \geq y\beta$ or $x\alpha \leq y\beta$.

Proof.

- Suppose $x\alpha \leq y\beta$.
- Fix any $u, v \in P$.
- Then $(c_u, c_v) = (\alpha, \beta)\delta$ for some $\delta \in S$.
- Hence

$$u = xc_u = (x\alpha)\delta \leq (y\beta)\delta = yc_v = v.$$

- u and v chosen arbitrarily, so P is trivial, a contradiction.

Proposition

Let \mathbb{P} be a non-trivial poset. If $S = \text{End}(\mathbb{P})$ has monogenic diagonal right act then there exists $\alpha, \beta \in R_1$ such that their images are unrelated under \leq ,

Corollary

If \mathbb{P} is a non-trivial chain then $\text{End}(\mathbb{P})$ does not have monogenic diagonal right act.

Conjecture

Let \mathbb{P} be a poset. If $S = \text{End}(\mathbb{P})$ has right diameter 1, then there exists right units which are “finitely related”.

Chains Part 2: Finding upper-bounds

Higher diameters: left

Lemma (EGMQ-GR)

Let $S = \text{End}(\mathbb{A})$ for some reflexive structure \mathbb{A} . Then $D_\ell(S) \leq 2$.

Proof.

For any $x \in A$ we have $D_\ell(S; \{(1, c_x)\}) \leq 2$: If $\theta, \psi \in S$ then

$$\theta = \theta \circ 1, \theta \circ c_x = c_x = \psi \circ c_x, \psi \circ 1 = \psi.$$

Succinct:

$$(\theta, c_x) = \theta(1, c_x), \psi(c_x, 1) = (c_x, \psi).$$

□

Corollary

Let \mathbb{P} be an infinite chain. Then $D_\ell(\text{End}(\mathbb{P})) = 2$.

Higher diameters: right

- Let $S = \text{End}(\mathbb{A})$ for some infinite reflexive structure \mathbb{A} .
- Recall $\mathcal{C} = \mathcal{C}_A$ is a (right zero) minimum ideal of S , and thus $\omega = \omega_r^S|_{\mathcal{C} \times \mathcal{C}}$ is a right congruence of S .
- Let $D_r^S(\mathcal{C})$ denote the right diameter of \mathcal{C} corresponding to $\omega_r^S|_{\mathcal{C} \times \mathcal{C}}$.

Lemma (EGMQ-GR)

Let $S = \text{End}(\mathbb{A})$ for some reflexive structure \mathbb{A} and let $\mathcal{C} = \mathcal{C}_A$. Then

$$D_r^S(\mathcal{C}) \leq D_r(S) \leq D_r^S(\mathcal{C}) + 2.$$

Swapping to orbits

- Let $S = \text{End}(\mathbb{A})$ for some reflexive \mathbb{A} and let $\mathcal{C} = \mathcal{C}_A$.
- Paths in $\omega_r^S|_{\mathcal{C} \times \mathcal{C}} = \langle U \rangle$ are of the form $c_u \delta = c_v \delta'$ ($\delta, \delta' \in S$).
- But $c_u \delta = c_v \delta'$ if and only if $u\delta = v\delta'$.
- Hence any U -path from c_x to c_y is equivalent to a $\bar{U} = \{(u, v) \in A^2 : (c_u, c_v) \in U\}$ -path

$$x = u_1 \delta_1, v_1 \delta_1 = u_2 \delta_2, \dots, v_n \delta_n = y.$$

Lemma

$D_r^S(\mathcal{C}) = 1$ if and only if there exists a finite collection $(u_1, v_1), \dots, (u_n, v_n) \in A \times A$ such that for each $x, y \in A$ there exists $1 \leq i \leq n$ and $\delta \in \text{End}(\mathbb{A})$ with $(x, y) = (u_i, v_i)\delta$.

We arrive at a central concept to transformation monoids:
(2-)oligomorphicity!

Oligomorphic transformation monoid

- Let $S \leq \mathcal{T}_X$ be a transformation monoid.
- S acts on the right of X^n by $(x_1, \dots, x_n)\theta = (x_1\theta, \dots, x_n\theta)$.
- We call $(x_1, \dots, x_n)S$ an **n -orbit**.

Definition

S is called **n -oligomorphic** if it has only finitely many n -orbits. If S is n -oligomorphic for each n then S is **oligomorphic**.

- Studied extensively by P. Cameron, M. Pech, J. Nešetřil, D. Mašulović etc.
- Oligomorphic groups are central in a number of model theoretic concepts e.g. ω -categoricity, quantifier elimination, and homogeneity.
- Oligomorphic transformation monoids give an endomorphism-dual to these concepts.

Corollary (EGMQ-GR)

Let \mathbb{A} be a reflexive structure. Then $D_r^S(\mathcal{C}_A) = 1$ if and only if \mathbb{A} is 2-oligomorphic. In which case $D_r(\text{End}(\mathbb{A})) \leq 3$.

Oligomorphic transformation monoid

Theorem (Mašulović, 2007)

The endomorphism of a tree (and hence a chain) is oligomorphic. Not all posets have oligomorphic endomorphism monoids.

Lemma (EGMQ-GR)

The endomorphism monoid of a poset is 2-oligomorphic, with at most eight 2-orbits.

Corollary (EGMQ-GR)

If \mathbb{P} is a poset then $D_r(\text{End}(\mathbb{P})) \leq 3$. If, further, \mathbb{P} is a chain we have $D_r(\text{End}(\mathbb{P})) \in \{2, 3\}$.

Chains Part 3: The dichotomy on the right

Classifying chains

- Let C be a chain with minimum z and let $S = \text{End}(C)$.
- We call C **min-shiftable** if there exists a right unit $\alpha \in S$ with $z\alpha > z$.
- Then for each $\theta \in S$ we may construct $\delta_\theta \in S$ such that $\theta = \alpha\delta_\theta$ and $z\delta_\theta = z$.
- (α, c_z) -paths of length 2:

$$\theta = \alpha\delta_\theta, c_z\delta_\theta = c_z = c_z\delta_\psi, \alpha\delta_\psi = \psi.$$

Theorem (GEM+QG)

Let C be an infinite chain and $S = \text{End}(C)$. Then $D_r(S) = 2$ if and only if C is either min-shiftable or max-shiftable. Otherwise, $D_r(S) = 3$.

- $D_r(\text{End}(\mathbb{N})) = 2$.
- $D_r(\text{End}(1 + \mathbb{Z})) = 3$.

The rough idea

Monogenic diagonal right act: $\exists \alpha, \beta \in R_1$ with unrelated images (chains discounted).

$D_r(\text{End}(\mathbb{P})) = 1$: $\exists \alpha, b \in R_1$ with only finitely entangled images(?) (chains still discounted).

$D_r(\text{End}(\mathbb{P})) = 2$: $\exists \alpha \in R_1$ of a special type (chains: move min or max).

Otherwise: $D_r(\text{End}(\mathbb{P})) = 3$.

Thank you!