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Right congruences

Definition

A right congruence on a semigroup S is an equivalence relation p such
that for every a,b,c € S,
apb=acpbc.

o If U C S x S, then the right congruence generated by U, denoted
(U), is the smallest right congruence containing U.

Definition

A semigroup S is right Noetherian if every right congruence is finitely
generated (f.g).




Generating right congruences

Lemma (Kilp, Knauer, Mikhalev, 2000)

Let U C S x S. Then a(U)b if and only if either a = b or there exists a
U-path from a to b, that is,

a = U181,V1S1 = U289,...,UnSy, = b

where (u;,v;) € UUU ! and s; € S,
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a = Uu1Sy V181 = U282 Un—1Sn—1 — UnSn



Pseudo-finite semigroups

Pseudo-finite: the semigroup finiteness condition of the universal
right congruence w;? being finitely generated and there being a bound
on the length of sequences required to relate any two elements.

First studied by Dales and White in 2017 with regards to Banach
algebras.

@ Boring property for groups: pseudo-finite groups are finite.
o Kobyashi (2007): wM is f.g. if and only if M is of type right-FP1.
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@ | first joined the project for “Semigroups with finitely generated

universal left congruence” (2019, Dandan, G, Q-G, Zenab).

Clear picture for key classes including inverse semigroups, completely
regular, and Rees matrix.

Far more complex then first thought: there exists pseudo-finite
regular semigroups without a completely simple minimal ideal “On
minimal ideals in pseudo-finite semigroups” (2022, G,M, Q-G, R).
Pseudo-finite transformation semigroups studied in “On the diameter
of semigroups of transformations and partitions” (2023, E,G,Q-G,R).



Let S be a semigroup. Then w? is f.g. if and only if there exists a subset
U of S x S such that for any a,b € S, we have a = b or there exists a
U-path from a to b, that is,

a = U181,V181 = U289,...,UpSy = b

where (u;,v;) € U and s; € S*.

Let S be a semigroup in which w? is f.g.

o If w? = (U), then define D,.(S;U) =sup{length of the smallest
U-path froma to b : a,b € S}.

@ The right diameter of S is then
D,(S) =min{D,(S;U) : wd = (U),|U] < cc}.

o If D,.(S) is finite, then S is called right pseudo-finite.




@ Having right diameter 1 is equivalent to the well-studied notion of the
diagonal right act being f.g.

@ For a semigroup S, the diagonal right S-act is the set S x S under
the right action given by (a,b)c = (ac, be).

@ First studied implicitly by Bulman-Fleming and McDowell (1990), and
formalized by Robertson et al (2001).

e Gallagher and N (2005) studied this property for many natural
semigroups, including subsemigroups of Tx, endomorphisms of
chains, and endomorphisms of independence algebras.

@ Also considered the stronger property of the diagonal right act being
monogenic, i.e. there exists a,b € S such that S x S = (a,b)S.



Hierarchy of conditions

w? is finitely generated.

T

S is pseudo-finite.

T

Dy(S) =1

)

The diagonal right S-act is finitely generated.

T

The diagonal right S-act is monogenic.



The Meta Problem

Problem (Meta)

Which “characteristics” of a semigroup determines its left/right diameter.

@ A “characteristic" of a semigroup could mean the existence of special
elements, its properties (such as algebraic identities), or properties
inherited from some other structure.

@ Which characteristic is best suited for building a global theory of
pseudo-finite semigroups?



Previous methods

Previous work can be broadly broken down into two methods depending on
if we view a semigroup as a transformation semigroup or abstractly (e.g.
variety of semigroups).

Transformation semigroups: Discussed in my talk last summer.

- Pro: Able to manipulate concrete elements to give bounds on the
diameter. Great success when a degree of transitivity is added.

- Con: Global structure often mysterious or unhelpful.

Abstractly: Which properties hold for all semigroups of a particular
diameter? Most widely used method.
- Pro: Global structure obtained by restricting to semigroups satisfying
certain conditions. E.g. no infinite diameter 1 semigroup can be
commutative (Gallagher).

- Con: Elements are not concrete, and so can be harder to manipulate.



Having our Baumkuchen and eating it

@ Restrict to transformation monoids which have an inherited global
structure to keep the benefits of both methods: Endomorphism
monoids!

Definition

A (first order) structure A = (A4; R) is a set A together with a collection
R of textbfbasic relations and functions defined on A.

@ A semigroup is considered as a set together with a binary
(associative) operation.

@ Both partially ordered sets (posets) and graphs can be considered as
sets together with a single binary relation.

@ A semilattice can also be considered as the structure (Y; A, <) where
a<bifandonlyif a Ab=a.



Endomorphisms

Definition
Let A = (A; R) be a structure. Then a map 6: A — A is an

endomorphism of A if it preserves each function and relation from R,
that is, for each function f € R, relation R € ], and a4, ...,a, € A,

((aty...,an)f)0 = (a10,...,a,0)f,
(ai,...,an) € R= (ai10,...,a,0) € R.

The set of all endomorphisms of A is denoted End(A), and forms a
submonoid of T4.

Eg If Y = (Y;A, <) is a semilattice then § € End(Y) if

(xANy)d =x0 ANyb and x < y = 20 < y6.



Endomorphisms

Warning: How we consider our structure (its signature) can change its
endomorphism monoid. E.g. If Y is a semilattice then:

End(Y;A) = End(Y; A, <) € End(Y; <).



Endomorphisms

The philosophy behind this method is that the properties of End(A) often

depend solely on those of the underlying structure A, which is easier to
work with.

- : Global structure inherited from A?

- . Local structure (concrete maps) inherited from A and the
closure property.

- Con: Not all transformation monoids are the endomorphism monoid
of some structure.

Given a monoid monoid M < Tx, t.fa.e.:
(1) M is the endomorphism monoid of some (first order) structure;
(2) M is the endomorphism monoid of some relational structure;

(3) M is closed in the topology of pointwise convergence. That is,
whenever o« € Tx is such that for each finite A C X there exists
v € M with a4 = 7|4 then o € M.

Consequence: Suffices to consider relational structures!




Original motivation

@ Tackling the problem via endomorphism monoids was briefly
examined by Gallagher and R. in the diameter 1 case.

o (Mostly) classified those independence algebras with endomorphism
monoids being of diameter 1.

o No infinite chain (totally ordered set) can have endomorphism monoid
of left or right diameter 1.

Problem (Motivation)

Determine why chains cannot have endomorphisms of diameter 1 (or
stronger). What determines their left/right diameter?




Chains Part 1:
Explaining the lower bound of 2.



Left and right units

@ The diagonal right act of Tx is monogenic and generated by any
injective maps «, § with disjoint images (Gallagher, R).

@ The injective maps of Tx correspond its right units i.e. elements
a € S such that there exists b € S with ab = 1.

@ The submonoid of right units of a monoid is the R-class Ry of the
identity.

@ The group of units is the H-class H;.

Proposition

Ri=H, < L =H, < J, = Hy < S does not contain a copy of the
bicyclic monoid B = {(a,b|ab = 1).

A monoid satisfying one (and hence all) of these conditions is called
Dedekind-finite. E.g. Tx is not Dedekind-finite.

Lemma (EGMQ-GR)

A Dedekind-finite monoid has right/left diameter 1 if and only if it is finite.




Left and right units

Problem
Does the right diameter of End(A) depend only on its right units?

@ We restrict our attention to relational structures in which there is an
easy way to pass from the endomorphisms to its elements.



Reflexive structures

@ Given an n-ary relation R of a set A, we define an R-loop to be an
element z € A with (z,z,...,z) € R.

@ We call R reflexive if each z € A is an R-loop.

@ A relational structure A is called reflexive if each of its basic relations
are reflexive.

If A is reflexive then the constant map c,: A — A (a— x) is an
endomorphism of A for each x € A. Moreover, C4 = {cy : © € A} is the
minimum ideal of End(A).

\

Posets (P; <), chains, prosets, looped graphs, and bands(!) are all
reflexive.

A\




Posets

We restrict to posets - the results extend to any reflexive structure (but
with added ugliness).

Proposition (EGMQ-GR)

Let P be a non-trivial poset. If S = End(IP) has monogenic diagonal right
act then there exists a, 5 € Ry such that their images are unrelated under
<, i.e. there exists no x,y € P with za > yf or xa < yfs.

Proof.
@ Suppose za < yf.
o Fix any u,v € P.

@ Then (cy,cy) = (o, B)6 for some § € S.
@ Hence
u=1xc, = (za)d < (yB)d = ye, = v.

@ u and v chosen arbitrarily, so P is trivial, a contradiction.




Proposition

Let P be a non-trivial poset. If S = End(IP) has monogenic diagonal right
act then there exists o, 5 € Ry such that their images are unrelated under
=,

Corollary

If P is a non-trivial chain then End(P) does not have monogenic diagonal
right act.

Let P be a poset. If S = End(P) has right diameter 1, then there exists
right units which are “finitely related”.




Chains Part 2:
Finding upper-bounds



Higher diameters: left

Lemma (EGMQ-GR)
Let S = End(A) for some reflexive structure A. Then D,(S) < 2.

Proof.
For any x € A we have Dy(S;{(1,¢cz)}) <2: If 0,74 € S then

0=001,00c, =c, =vocg Yol =1

Succinct:

(G,Cx) = 0(1’Cx)7¢(cw7 1) = (C:Mﬁ)-

Let P be an infinite chain. Then Dy(End(P)) = 2.




Higher diameters: right

e Let S = End(A) for some infinite reflexive structure A.

@ Recall C = Cy is a (right zero) minimum ideal of S, and thus
w = w?|cxe is a right congruence of S.

o Let DZ(C) denote the right diameter of C corresponding to w?|cxc-

Lemma (EGMQ-GR)

Let S = End(A) for some reflexive structure A and let C = C4. Then

D3(C) < D,(S) < DS (C) +2.




Swapping to orbits

@ Let S = End(A) for some reflexive A and let C = Cy4.
o Paths in w?|cxe = (U) are of the form ¢, 6 = c,0' (6,6' € S).
e But ¢,0 = ¢,d if and only if ud = vd'.
@ Hence any U-path from ¢, to ¢, is equivalent to a
U = {(u,v) € A%: (cy, cy) € U}-path

Tr = ’U,151,1)151 = ’U,2(52, e ,vnén =Y.

D2(C) = 1 if and only if there exists a finite collection
(u1,v1),. .., (un,vn) € A X A such that for each x,y € A there exists
1<i<nandj e End(A) with (z,y) = (u;, v;)d.

We arrive at a central concept to transformation monoids:
(2-)oligomorphicity!



Oligomorphic transformation monoid

o Let S < Tx be a transformation monoid.
@ S acts on the right of X™ by (x1,...,2,)0 = (210,...,2,0).
o We call (z1,...,2,)S an n-orbit.

Definition

S is called n-oligomorphic if it has only finitely many n-orbits. If S is
n-oligomorphic for each n then S is oligomorphic.

o Studied extensively by P. Cameron, M. Pech, J. Neset¥il, D.
Masulovi¢ etc.

@ Oligomorphic groups are central in a number of model theoretic
conceps e.g. w-categoricity, quantifier elimination, and homogeneity.

@ Oligomorphic transformation monoids give an endomorphism-dual to
these concepts.

Corollary (EGMQ-GR)

Let A be a reflexive structure. Then D2 (Cya

) =1 if and only if A is
2-oligomorphic. In which case D,(End(A)) < 3.




Oligomorphic transformation monoid

Theorem (Masulovi¢, 2007)

The endomorphism of a tree (and hence a chain) is oligomorphic. Not all
posets have oligomorphic endomorphism monoids.

Lemma (EGMQ-GR)

The endomorphism monoid of a poset is 2-oligomorphic, with at most
eight 2-orbits.

Corollary (EGMQ-GR)

If P is a poset then D,(End(IP)) < 3. If, further, P is a chain we have
D, (End(P)) € {2,3}.




Chains Part 3:
The dichotomy on the right



Classifying chains

o Let C be a chain with minimum z and let S = End(C).

@ We call C' min-shiftable if there exists a right unit o € S with
o> 2.

@ Then for each # € S we may construct dy9 € S such that 8 = ady and
209 = 2.

@ («,c,)-paths of length 2:

0 = adg, c.09 = c; = €0y, by, = 1.

Theorem (GEM+QG)

Let C' be an infinite chain and S = End(C'). Then D,(S) =
if C is either min-shiftable or max-shiftable. Otherwise, D, (S

o Dy(End(N) =2
e D, (End(1+2)) =



The rough idea

Monogenic diagonal right act: 3 «, 8 € R; with unrelated images (chains
discounted).

{

D,(End(P)) = 1: Ja, b € Ry with only finitely entangled images(?)
(chains still discounted).

|

D,(End(P)) = 2: Ja € Ry of a special type (chains: move min or max).

|

Otherwise: D, (End(P)) = 3.

Thank you!



