

FREE MONOIDS ARE COHERENT

VICTORIA GOULD, MIKLÓS HARTMANN, AND NIK RUŠKUC

ABSTRACT. A monoid S is said to be *right coherent* if every finitely generated subact of every finitely presented right S -act is finitely presented. *Left coherency* is defined dually and S is *coherent* if it is both right and left coherent. These notions are analogous to those for a ring R (where, of course, S -acts are replaced by R -modules). Choo, Lam and Luft have shown that free rings are coherent. In this note we prove that, correspondingly, any free monoid is coherent, thus answering a question posed by the first author in 1992.

1. INTRODUCTION AND PRELIMINARIES

The notion of right coherency for a monoid S is defined in terms of finitary properties of right S -acts, corresponding to the way in which right coherency is defined for a ring R via properties of right R -modules. Chase [1] gave equivalent internal conditions for right coherency of a ring R . The analogous result for monoids states that a monoid S is right coherent if and only if for any finitely generated right congruence ρ on S , and for any $a, b \in S$, the right congruence

$$r(a\rho) = \{(u, v) \in S \times S : au \rho av\}$$

is finitely generated, and the subact $(a\rho)S \cap (b\rho)S$ of the right S -act S/ρ is finitely generated (if non-empty) [4]. *Left coherency* is defined for monoids and rings in a dual manner and a monoid or ring is *coherent* if it is both right and left coherent. Coherency is a rather weak finitary condition on rings and monoids and as demonstrated by Wheeler [7], it is intimately related to the model theory of R -modules and S -acts.

A natural question is, which monoids are (right) coherent? This study was initiated in [4], where it is shown that the free commutative monoid on any set Ω is coherent. It is a consequence of [2, Corollary 2.2] that free rings are coherent, since the free ring on Ω is the monoid ring $\mathbb{Z}[\Omega^*]$ on the free monoid Ω^* over the ring of integers [6]. The question of whether the free monoid Ω^* itself is coherent, which we here answer positively, was left open in [4].

Theorem 1. *For any set Ω the free monoid Ω^* is coherent.*

Our proof of Theorem 1, given in Section 2, provides a blueprint for the proof in [5] that free left ample monoids are right coherent. Further comments are provided in Section 3.

Date: April 27, 2014.

2010 Mathematics Subject Classification. 20M05, 20M30.

Key words and phrases. free monoids, S -acts, coherency.

A few words on notation and technicalities. If H is a set of pairs of elements of a monoid S , then we denote by $\langle H \rangle$ the right congruence on S generated by H . It is easy to see that if $a, b \in S$, then $a \langle H \rangle b$ if and only if $a = b$ or there is an $n \geq 1$ and a sequence

$$a = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_n t_n = b$$

of equations where for $i \in \{1, \dots, n\}$ we have $t_i \in S$ and (c_i, d_i) or (d_i, c_i) lies in H . Such a sequence will be referred to as an H -sequence (of length n). It is convenient to allow $n = 0$ in the above sequence, in which case it is interpreted as the equality $a = b$. Given that Ω^* is a submonoid of the free group on Ω , we may use the notation x^{-1} for $x \in \Omega^*$, where convenient.

2. PROOF OF THEOREM 1

Let Ω be a set; it is clearly enough to show that Ω^* is right coherent. To this end let ρ be the right congruence on Ω^* generated by a finite subset H of $\Omega^* \times \Omega^*$, which without loss of generality we assume to be symmetric.

Definition 2. An H -sequence

$$au = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_n t_n = bv$$

is *irreducible* if $u, t_1, \dots, t_n, v \in \Omega^*$ do not have a common non-empty suffix. Clearly, this is equivalent to one of u, t_1, \dots, t_n, v being ϵ .

Throughout this note for an H -sequence as above we define $a = d_0, u = t_0, c_{n+1} = b$ and $t_{n+1} = v$.

Definition 3. A pair $(au, bv) \in \rho$ is *irreducible* if for any common non-empty suffix x of u and v we have that $(aux^{-1}, avx^{-1}) \notin \rho$.

Note that, strictly speaking, we should say in Definition 3 that the *quadruple* (a, b, u, v) is irreducible. Similar comments apply to Definition 2. However, we sacrifice absolute precision for the sake of simplicity; no ambiguity should occur. It is clear that the components of irreducible pairs can only be connected by irreducible H -sequences.

We define

$$K = \max\{|p| : (p, q) \in H\}.$$

Lemma 4. *Let*

$$au = c_1 t_1, d_1 t_1 = c_2 t_2, \dots, d_n t_n = bv$$

be an irreducible H -sequence. Then either the sequence $au = c_1 t_1$ is irreducible (in which case $|u| \leq \max(|b|, K)$ and $u = \epsilon$ or $t_1 = \epsilon$) or there exist an index $1 \leq i \leq n$ such that $t_{i+1} = \epsilon$ (so that $au \rho c_{i+1}$) and $x \in \Omega^+$ such that $|x| \leq \max(|b|, K)$ and

$$aux^{-1} = c_1 t_1 x^{-1}, d_1 t_1 x^{-1} = c_2 t_2 x^{-1}, \dots, d_{i-1} t_{i-1} x^{-1} = c_i t_i x^{-1}$$

is an irreducible H -sequence.

Proof. If $au = c_1t_1$ is irreducible then either $u = \epsilon$ or $t_1 = \epsilon$. In both cases we have that $|u| \leq \max(|b|, K)$. Suppose therefore that $au = c_1t_1$ is not irreducible. Let $i \in \{1, \dots, n\}$ be the smallest index such that $t_{i+1} = \epsilon$ (such an index exists, because our sequence is irreducible), and let x be the longest common non-empty suffix of $u = t_0, t_1, \dots, t_i$. Then the sequence

$$aux^{-1} = c_1t_1x^{-1}, d_1t_1x^{-1} = c_2t_2x^{-1}, \dots, d_{i-1}t_{i-1}x^{-1} = c_it_ix^{-1}$$

is clearly irreducible. Furthermore, since $t_{i+1} = \epsilon$, we have that $d_it_i = c_{i+1}$, so x is a suffix of c_{i+1} . If $i < n$ then $(c_{i+1}, d_{i+1}) \in H$, while if $i = n$ we have $c_{i+1} = b$. In either case $|x| \leq |c_{i+1}| \leq \max(|b|, K)$. \square

Lemma 5. *Let*

$$au = c_1t_1, \dots, d_nt_n = bv$$

be an irreducible H -sequence. Then either $u = \epsilon$, or there exist a factorisation $u = x_k \dots x_1$ and indices $n+1 \geq \ell_1 > \ell_2 > \dots > \ell_k \geq 1$ such that for all $1 \leq j \leq k$:

- (i) $0 < |x_j| \leq \max(|b|, K)$ and
- (ii) $aux_1^{-1} \dots x_{j-1}^{-1} \rho c_{\ell_j}$ (note that for $j = 1$ we have $au \rho c_{\ell_1}$).

Proof. We proceed by induction on $|u|$: if $|u| = 0$ the result is clear. Suppose that $|u| > 0$ and the result is true for all shorter words. If $au = c_1t_1$ is irreducible, then $t_1 = \epsilon$ and the factorisation $u = x_1$ satisfies the required conditions, with $k = 1$ and $\ell_1 = 1$. On the other hand, if $au = c_1t_1$ is not irreducible, then by Lemma 4, there exist an index $1 \leq i \leq n$ such that $t_{i+1} = \epsilon$, so that $au \rho c_{i+1}$, and $x_1 \in \Omega^+$ such that $|x_1| \leq \max(|b|, K)$ and

$$aux_1^{-1} = c_1t_1x_1^{-1}, d_1t_1x_1^{-1} = c_2t_2x_1^{-1}, \dots, d_{i-1}t_{i-1}x_1^{-1} = c_it_ix_1^{-1}$$

is an irreducible H -sequence. Put $\ell_1 = i+1$. Since $|ux_1^{-1}| < |u|$, the result follows by induction. \square

Lemma 6. *Let $a \in \Omega^*$. Then $r(a\rho)$ is finitely generated.*

Proof. Let $K' = \max(K, |a|) + 1, L = 2|H| + 2, N = K'L$ and define

$$X = \{(u, v) : |u| + |v| \leq 3N\} \cap r(a\rho).$$

We claim that X generates $r(a\rho)$. It is clear that $\langle X \rangle \subseteq r(a\rho)$.

Let $(u, v) \in r(a\rho)$. We show by induction on $|u| + |v|$ that $(u, v) \in \langle X \rangle$. Clearly, if $|u| + |v| \leq 3N$, then $(u, v) \in X$. We suppose therefore that $|u| + |v| > 3N$ and make the inductive assumption that if $(u', v') \in r(a\rho)$ and $|u'| + |v'| < |u| + |v|$, then $(u', v') \in \langle X \rangle$. If (au, av) is not irreducible, it is immediate that $(u, v) \in \langle X \rangle$. Without loss of generality we therefore suppose that (au, av) is irreducible and $|v| \leq |u|$, so that $|u| > N$. Let

$$au = c_1t_1, \dots, d_nt_n = av$$

be an irreducible H -sequence. Clearly $u \neq \epsilon$, so by Corollary 5, there exists a factorisation $u = x_k \dots x_1$ such that for all $1 \leq j \leq k$ we have $0 < |x_j| \leq K'$ and $aux_1^{-1} \dots x_{j-1}^{-1} \rho c_{\ell_j}$ for some $1 \leq \ell_j \leq n+1$. Since $|u| > K'L$ we have that $k > L$. Note that the number of all

elements of the form c_i is less than $L - 1$. This in turn implies that there exist two indices $1 \leq k - L < j < i \leq k$ such that $c_{\ell_i} = c_{\ell_j}$, so that

$$aux_1^{-1} \dots x_{i-1}^{-1} \rho c_{\ell_i} = c_{\ell_j} \rho aux_1^{-1} \dots x_{j-1}^{-1}.$$

Since $i, j > k - L$ we have that $k - i + 1 \leq L$, so $|ux_1^{-1} \dots x_{i-1}^{-1}| = |x_k \dots x_i| \leq K'L$, and similarly $|ux_1^{-1} \dots x_{j-1}^{-1}| \leq K'L$. As a consequence $(ux_1^{-1} \dots x_{i-1}^{-1}, ux_1^{-1} \dots x_{j-1}^{-1}) \in X$, and letting $u' = ux_1^{-1} \dots x_{i-1}^{-1} x_{j-1} \dots x_k$, we see that

$$(u', u) = (ux_1^{-1} \dots x_{i-1}^{-1}, ux_1^{-1} \dots x_{j-1}^{-1}) x_{j-1} \dots x_1 \in \langle X \rangle.$$

In particular, $au' \rho au \rho av$. Note that $|u'| < |u|$, because $j < i$ and $x_j \neq \epsilon$. Thus by the induction hypothesis we have that $(v, u') \in \langle X \rangle$ and so the lemma is proved. \square

Lemma 7. *Let $a, b \in S$. Then $(a\rho)S \cap (b\rho)S$ is empty or finitely generated.*

Proof. Let us suppose that $(a\rho)S \cap (b\rho)S \neq \emptyset$ and let

$$X = \{a\rho, b\rho, c\rho : (c, d) \in H\} \cap (a\rho)S \cap (b\rho)S.$$

We claim that X generates $(a\rho)S \cap (b\rho)S$. It is enough to show that for every irreducible pair (au, bv) we have that $(au)\rho \in X$. For this, let

$$au = c_1 t_1, \dots, d_n t_n = bv$$

be an irreducible H -sequence. Then by Lemma 4, $(au)\rho \in X$. \square

3. COMMENTS

Given that the class of right coherent monoids is closed under retract [5], it follows from the results of that paper that free monoids are coherent. However, as the arguments in [5] for free left ample monoids are burdened with unavoidable technicalities, we prefer to present here the more transparent proof that Ω^* is coherent, by way of motivation for the work of [5]. With free objects in mind, we remark that we also show in [5] that the free inverse monoid on Ω is coherent if and only if Ω is a singleton.

REFERENCES

- [1] S.U. Chase, ‘Direct product of modules’, *Trans. Amer. Math. Soc.* **97** (1960), 457–473.
- [2] K.G. Choo, K.Y. Lam and E. Luft, ‘On free product of rings and the coherence property’, *Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic* (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 135–143, *Lecture Notes in Math.* **342**, Springer, Berlin, 1973.
- [3] V. Gould, ‘Model Companions of S-systems’, *Quart. J. Math. Oxford* **38** (1987), 189–211.
- [4] V. Gould, ‘Coherent monoids’, *J. Australian Math. Soc.* **53** (1992), 166–182.
- [5] V. Gould, M. Hartmann, ‘The free left ample monoid is right coherent’, *in preparation*.
- [6] R. N. McKenzie, G. F. McNulty, and W. T. Taylor, *Algebra, Lattices, Varieties*, Wadsworth, 1983.
- [7] W.H. Wheeler, ‘Model companions and definability in existentially complete structures’, *Israel J. Math.* **25** (1976), 305–330.

E-mail address: `victoria.gould@york.ac.uk`

E-mail address: `miklos.hartmann@york.ac.uk`

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YORK, HESLINGTON, YORK YO10 5DD, UK

E-mail address: `nik@mcs.st-and.ac.uk`

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF ST ANDREWS, ST ANDREWS, FIFE KY16 9SS, UK