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Right congruences

Global aim: Study finitary conditions of semigroups that naturally
arise from one sided congruences.

Definition

A right congruence on a semigroup S is an equivalence relation ρ such
that for every a, b, c ∈ S,

a ρ b⇒ ac ρ bc.

If U ⊆ S × S, then the right congruence generated by U , denoted
⟨U⟩, is the smallest right congruence containing U .



Generating right congruences

Lemma (Kilp, Knauer, Mikhalev, 2000)

Let U ⊆ S × S. Then a ⟨U⟩ b if and only if either a = b or there exists a
U -path from a to b, that is,

a = u1s1, v1s1 = u2s2, . . . , vnsn = b

where (ui, vi) ∈ U ∪ U−1 and si ∈ S1.

a= u1s1

s1

v1s1 = u2s2

s2

vn−1sn−1= unsn

snsn−1

vnsn = b

u1 v1 u2 v2 un vn
vn−1



Diameter

Corollary

Let S be a semigroup. Then ωSr is f.g. if and only if there exists a finite
subset U of S × S such that for any a, b ∈ S, we have a = b or there
exists a U -path from a to b, that is,

a = u1s1, v1s1 = u2s2, . . . , vnsn = b

where (ui, vi) ∈ U and si ∈ S1.

Definition

Let S be a semigroup in which ωSr is f.g.

If ωSr = ⟨U⟩, then define Dr(S;U) =sup{length of the smallest
U -path from a to b : a, b ∈ S}.
The right diameter of S is then
Dr(S) =min{Dr(S;U) : ωSr = ⟨U⟩, |U | <∞}.
If Dr(S) is finite, then S is called right pseudo-finite.



Pseudo-finite semigroups

(Left) pseudo-finite semigroups were first studied by Dales and White
in 2017 with regards to Banach algebras.
Boring property for groups: pseudo-finite groups are finite.
Kobyashi (2007): ωMr is f.g. if and only if M is of type right-FP1.
I first joined the project for “Semigroups with finitely generated
universal left congruence” (2019, Dandan, G, Q-G, Zenab).
Clear picture for key classes including inverse semigroups, completely
regular, and Rees matrix.
Far more complex then first thought: there exists pseudo-finite
regular semigroups without a completely simple minimal ideal “On
minimal ideals in pseudo-finite semigroups” (2022, G,M, Q-G, R).
The diameters of transformation semigroups calculated in “On the
diameter of semigroups of transformations and partitions” (2023,
E,G,M,Q-G,R).
The exact diameters of the endomorphism monoid of a chain
calculated in “Diameters of endomorphism monoids of chains” (2024,
E,G, M,Q-G). Extended the diameter 1 case of Gallagher and N
(2005).



A curious occurrence

Each semigroup we considered had left and right diameter at most 4 (if
pseudo-finite).

Semigroup S ωrS f.g.? Dr(S) ωlS f.g.? Dl(S)

BX Yes 1 Yes 1
PTX Yes 1 Yes 1
IX Yes 2 Yes 2
TX Yes 1 Yes 1
FX Yes 1 No n.a.
InjX Yes 4 No n.a.

BLX,q, q < |X| No n.a. No n.a.
BLX Yes 3 No n.a.
SurjX No n.a. Yes 4

DBLX,q, q < |X| No n.a. No n.a.
DBLX No n.a. Yes 2

TX\ InjX No n.a. Yes 2
TX\ SurjX Yes 2 No n.a.

PX Yes 1 Yes 1
PBX Yes 1 Yes 1

End(C) (C chain) Yes 2 or 3 Yes 2

Table: Summary of results.



A curious occurrence

Problem

For each n ∈ N does there exist a semigroup of right diameter n?

Answer: Almost definitely.

Problem

For each n ∈ N construct a “nice” semigroup of right diameter n.

Problem (Meta)

Which “characteristics” of a semigroup determines its right diameter?



First order structures

We restrict to transformation monoids which have an inherited global
structure: Endomorphism monoids.

Definition

A (first order) structure M = (M ;K) is a set M together with a
collection K of basic relations and functions defined on M .

A semigroup is considered as a set together with a binary
(associative) operation.

Both partially ordered sets (posets) and graphs can be considered as
sets together with a single binary relation.

A semilattice can also be considered as the structure (Y ;∧,≤) where
a ≤ b if and only if a ∧ b = a.



Endomorphisms

Definition

Let M = (M ;K) be a structure. Then a map θ : M →M is an
endomorphism of M if it preserves each function and relation from K,
that is, for each function f ∈ K, relation R ∈ K, and a1, . . . , an ∈M ,

((a1, . . . , an)f)θ = (a1θ, . . . , anθ)f,

(a1, . . . , an) ∈ R⇒ (a1θ, . . . , anθ) ∈ R.

The set of all endomorphisms of M is denoted End(M), and forms a
submonoid of TM .

E.g. If Y = (Y ;∧,≤) is a semilattice then θ ∈ End(Y) if

(x ∧ y)θ = xθ ∧ yθ and x ≤ y ⇒ xθ ≤ yθ.

Note: End(Y ;∧) = End(Y ;∧,≤) ⊆ End(Y ;≤).



Our plan of attack

The method: Properties of End(M) often depend solely on those of
the underlying structure M, which is easier to work with.

Problem

Construct a structure Mn such that End(Mn) has right diameter n.

We study relational structures in which it is easier to pass between
elements of the structure and endomorphisms: Reflexive structures.



Reflexive structures

Given an n-ary relation R of a set M , we define an R-loop to be an
element x ∈M with (x, x, . . . , x) ∈ R.

We call R reflexive if each x ∈M is an R-loop.

A relational structure M is called reflexive if each of its basic
relations are reflexive.

Lemma

If M is reflexive then the constant map cx : M →M (a 7→ x) is an
endomorphism of M for each x ∈ A. Moreover, CM = {cx : x ∈M} is the
minimum ideal of End(M).

Example

Posets (P ;≤), chains, prosets, looped graphs, and bands(!) are all
reflexive.

Right pseudo-finite monoids with a completely simple minimal ideal
were classified in “On minimal ideals in pseudo-finite semigroups”.
Exact diameter not considered.



The minimal right zero ideal

Let S = End(M) for some reflexive structure M and fix some x ∈M .

Recall C = CM is a (right zero) minimum ideal of S.

In particular, if θ = αδ in S then

cxθ = cxθ = cxαδ = cxαδ.

Hence DS
r (C) ≤ Dr(S), where D

S
r (C) denotes the right diameter of C

corresponding to the right congruence ωSr |C×C ∪∆S of S.

We call DS
r (C) the constant right diameter of M.

Paths are therefore of the form

ca = cu1δ1, cv1δ1 = cu2δ2, . . . , cvnδn = cb

for δi ∈ S and (cui , cvi) ∈ U .



Constant right diameter

Recall: Paths witnessing DS
r (C;U) = n are of the form

ca = cu1δ1, cv1δ1 = cu2δ2, . . . , cvnδn = cb

for δi ∈ S and (cui , cvi) ∈ U .

Lemma (EGMQ-GR)

Let S = End(M) for some reflexive structure M and let C = CA. Then

DS
r (C) ≤ Dr(S) ≤ DS

r (C) + 2.

Proof.

DS
r (C) ≤ Dr(S) is clear.

Fix x ∈M and let DS
r (C;U) = n.

For any θ, ψ ∈ S we get a U ∪ (U, 1) ∪ (1, U)-path

θ = 1θ, cxθ = cxθ →n cxψ = cxψ, 1ψ = ψ

of length n+ 2.



Swapping to orbits

Let S = End(M) for some reflexive M and let C = CM .

Recall: paths witnessing DS
r (C;U) are chains of equalities cuδ = cvδ

′

where (cu, cv) ∈ U and δ, δ′ ∈ S.

But cuδ = cvδ
′ if and only if uδ = vδ′.

Hence any U -path from cx to cy is equivalent to a path (in M)

x = u1δ1, v1δ1 = u2δ2, . . . , vnδn = y,

where (ui, vi) ∈ {(u, v) ∈M2 : (cu, cv) ∈ U ∪ U−1}.

Lemma

A reflexive structure M has constant right diameter 1 if and only if there
exists a finite collection (u1, v1), . . . , (un, vn) ∈M ×M such that for each
x, y ∈M there exists 1 ≤ i ≤ n and δ ∈ End(M) with (x, y) = (ui, vi)δ.
In which case 1 ≤ Dr(End(M)) ≤ 3.



Orbits and oligomorphicity

Let S ≤ TX be a transformation monoid.
S acts on the right of Xn by (x1, . . . , xn)θ = (x1θ, . . . , xnθ).
We call (x1, . . . , xn)S an n-orbit.
So M has constant-diameter 1 if and only if M ×M can be written
as a finite union of 2-orbits (of the action of End(M) on M ×M).

Definition

S is called n-oligomorphic if it has only finitely many n-orbits. If S is
n-oligomorphic for each n then S is oligomorphic.

Studied extensively by P. Cameron, M. Pech, J. Nešeťril, D.
Mašulović etc.
Oligomorphic groups are central in a number of model theoretic
conceps e.g. ω-categoricity, quantifier elimination, and homogeneity.
Oligomorphic transformation monoids give an endomorphism-dual to
these concepts.

Corollary (EGMQ-GR)

Let M be a 2-oligomorphic reflexive structure. Then DS
r (CM ) = 1, so that

Dr(End(M)) ≤ 3.



The converse

2-oligomorphicity is a stricter condition than having constant diameter 1.

Fact

Let G = (V ;E) be a looped graph (so (x, x) ∈ E for each x ∈ V ). Then

(x, y) End(G) = {(a, b) ∈ V 2 : dE(a, b) ≤ dE(x, y)}.

Corollary

A looped graph has constant diameter 1 if and only if it is either
unconnected, or connected of bounded (graph) diameter.

Since the 2-orbits correspond to the distances of elements in the graph:

Corollary

A looped graph is 2-oligomorphic if and only if there exists n ∈ N such
that each connected component has (graph) diameter at most n.



The converse

Example

The looped graph G = L1 ∪ L2 ∪ L3 ∪ · · · has constant diameter 1 but
isn’t 2-oligomorphic, where Ln is the line graph of length n.

x1,1 x2,1

x2,2

x3,1

x3,2x3,3

x4,1

x4,2

x4,3

x4,4

x5,1

x5,2

x5,3x5,4

x5,5

· · ·

Distinct 2-orbits: (x1,1, x2,1), (x1,1, x1,1), (x2,1, x2,2), (x3,1, x3,3), . . . .

(x1,1, x2,1) End(G) = G×G.



2-oligomorphicity and posets

Theorem (Mašulović, 2007)

The endomorphism of a tree (and hence a chain) is oligomorphic. Not all
posets have oligomorphic endomorphism monoids.

Lemma (EGMQ-GR)

The endomorphism monoid of a poset is 2-oligomorphic, with at most
eight 2-orbits.

Corollary (EGMQ-GR)

If P is a poset then Dr(End(P)) ≤ 3.



Higher constant right diameters

Recall: Any U -path from cx to cy is equivalent to a
{(u, v) ∈M2 : (cu, cv) ∈ U}-path

x = u1δ1, v1δ1 = u2δ2, . . . , vnδn = y.

A transformation semigroup S ≤ TX is called (properly) k-weakly
2-oligomorphic if (k ∈ N is minimal such that) there exists a finite
set U ⊆ X ×X such that for each (x, y) ∈ X ×X, there is a path
x = z1, . . . , zn = y with

(zi, zi+1) ∈ US =
⋃

(u,v)∈U

(u, v)S.

Corollary

Let M be a reflexive structure. Then DS
r (CM ) = n if and only if M is

properly n-weakly 2-oligomorphic. In which case
n ≤ Dr(End(M)) ≤ n+ 2.



The (big!) missing piece

Problem

For each n ≥ 2 construct a structure Mn which is properly n-weakly
2-oligomorphic. Manipulate the construction so that Dr(Mn) = n.

No examples found yet of properly 2-weakly 2-oligomorphic structures!

Lemma (EGMQ-GR)

Let G be a looped graph and S = End(G). Then ωSr is f.g., and t.f.a.e:

(1) S is right pseudo-finite;

(2) G is either unconnected, or connected of bounded diameter.

(2) Let G is 1-weakly 2-oligomorphic.

In which case Dr(S) ≤ 3.

Problem

Mirroring the achievements of D. Mašulović and M. Pech, find links
between weak oligomorphicity and forms of ω-categoricity, homogeneity,
and quantifier elimination.



Further usage and ideas

Similar concept of weak 2-oligomorphic groups (with respect to acting
on some set) is a key missing piece to solving the diameter of
endomorphism monoids of independence algebras.

We can also consider structures which are “close” to being reflexive,
i.e. have infinitely many loops. The outlined results easily generalize.
Key: Includes all graphs of interest.

Thank you!


