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Abstract. We survey the known results characterising those monoids S such that
the classes of free, projective or (weakly, strongly) flat S-acts are first order axiomati-
sable. The conditions on the monoid S that arise are finitary, and intricately related.
We examine their inter-connections and illustrate the independence of certain pairs.

1. Introduction

The so-called homological classification of monoids, that is, characterising monoids
by properties of their acts, is now almost 40 years old. Initiated by Skornjakov [17,

18] in the late 1960’s, the project grew apace in subsequent decades, as a glance at
the comprehensive monograph Monoids, Acts and Categories by Kilp, Knauer and
Mikhalev [14] makes evident. Of the several distinct strands of study that emerged,
perhaps the most notable is the consideration of acts that are free or that satisfy
a weaker property such as projectivity or flatness. The structure of projective acts
was determined in 1972 by Knauer [15]. There are several candidates for the notion of
flatness for acts, all of which coincide in the analogous situation of modules over a ring.
In a crucial paper [19] of 1970, Strenström considered acts that are directed colimits of
finitely generated free acts; such acts are now called strongly flat. The notion of tensor
product of acts was also introduced in [19] and elucidated by Kilp in [11]. Stenström
shows that for a monoid S and a left S-act B, the functor −⊗B preserves pullbacks and
equalisers if and only if B is strongly flat. Rather later, Bulman-Fleming [1] improved
upon this result by demonstrating that if − ⊗ B preserves pullbacks, then perforce it
preserves equalisers. Weakening Stenström’s concept, Kilp defined an act to be flat if
− ⊗ B preserves monomorphisms [11] and weakly flat if − ⊗ B preserves embeddings
of right ideals into S [12].

We thus have five classes of acts: for a monoid S we will denote the classes of free,
projective, strongly flat, flat and weakly flat left S-acts by Fr,P,SF ,F and WF ,
respectively. It is known that

Fr ⊆ P ⊆ SF ⊆ F ⊆ WF

where in general all of the inclusions are strict [14]. In this article we consider the
question: for which monoids S are these classes axiomatisable?

Any class of algebras A of a given fixed type has an associated first order language
L. A subclass B of A is axiomatisable (or elementary) if there is a set of sentences Π
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of L such that for any member C of A, C lies in B if and only if all sentences of Π are
true in C, that is, C is a model of Π. We say in this case that Π axiomatises B. It is
perhaps helpful here to demonstrate with an example pertinent to this paper.

Throughout this article, S will denote a monoid with set of idempotents E = E(S).
We recall that a left S-act A is a set A together with a map S × A → A, denoted by
(s, a) 7→ sa, such that for any a ∈ A and s, t ∈ S,

1a = a and (st)a = s(ta);

right S-acts are defined dually. It is convenient to allow the empty set to be a left and
a right S-act. Left (right) ideals of S are, of course, examples of left (right) S-acts;
again, we allow the empty set to be regarded as a left (right) ideal. We denote by S-Act
the class of all left S-acts. The first order language LS associated with S-Act has no
constant or relational symbols, other than =, and merely a unary function symbol λs

for each s ∈ S. An S-act A becomes an LS-structure (or an interpretation of LS), if
we interpret each λs by the function x 7→ sx. The class S-Act is axiomatised (amongst
all LS-structures) by the set of sentences

Π =
{

(∀x)(λ1(x) = x)
}

∪
{

µs,t : s, t ∈ S
}

where µs,t is the sentence

(∀x)
(

λst(x) = λs(λt(x))
)

.

Some special classes of left S-acts are axiomatisable for any monoid S. An S-act
A is torsion free if for any a, b ∈ A and s ∈ T , where T is the set of left cancellable
elements of S, from the equality sa = sb we can deduce that a = b. Clearly the class
T Fr of torsion free left S-acts is axiomatised by Π ∪ ΣT Fr where

ΣT Fr =
{

(∀x)(∀y)
(

λs(x) = λs(y) → x = y
)

: s ∈ T
}

.

Other natural classes of left S-acts are axiomatisable for some monoids and not for
others: the classes Fr,P,SF ,F and WF are all of this kind.

In a series of articles [7, 20, 2, 8], characterisations are given of those monoids S
such that Fr,P,SF ,F or WF is axiomatisable. The latest of these results is in the case
for Fr and appears in [8], which also contains a survey of the earlier work, including
full proofs, together with some further model-theoretic material. Not surprisingly, the
conditions on the monoid S that arise are finitary. The aim of the current article is
to investigate the relation between pairs of these conditions. It is known that if Fr is
axiomatisable, then so is P, and if P is axiomatisable, then so is SF . We give new
examples of monoids such that SF is axiomatisable, but P is not, and such that P is
axiomatisable, but F is not.

The structure of this paper is as follows. For completeness we visit briefly in
Section 2 the question of the conditions on S such that F or WF is axiomatisable. We
do not pursue these cases further here. In Section 3 we consider strongly flat acts, and
recall the characterisation from [7] of those monoids S such that SF is axiomatisable;
such monoids must satisfy conditions we refer to as (FGR) and (FGr). In Section 4
we look at projective acts and give the result from [20] determining those S such
that P is axiomatisable. Such monoids S must in particular be left perfect and hence
local. Section 5 looks at the remaining case of free acts; we present the result from
[8] characterising the monoids such that Fr is axiomatisable. Here we find a new and
rather curious condition for a monoid S which we label (F), which is implied by the
property that the group of units H1 of S has finite right index.
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The new material of this article comprises examples, for the most part. Some are
scattered through the text; we present two rather longer ones in our final section.
We investigate the connections between (FGR) and (FGr), left perfection, localness,
Condition (F) and H1 having finite right index, summarising our findings in a table.

For further details concerning the theory of S-acts, we refer the reader to ‘The Book’
[14]. The reader interested in the techiques used to arrive at the results presented here
should consult [4]. Our main tool is that of an ultraproduct, and the celebrated theorem
of  Los that tells us in particular that if A is an axiomatisable class of S-acts, then A
is closed under the formation of ultraproducts; however, we make no explicit use of
these ideas in this paper. We follow standard semigroup convention in denoting the
four Green’s relations on a monoid S of which we make use by L,R,H and D and
for an element a ∈ S, the corresponding equivalence classes containing a by La, Ra, Ha

and Da.

2. Flat and weakly flat acts

To define classes of flat left S-acts we need the notion of tensor product. If A is a
right S-act and B a left S-act then the tensor product of A and B, written A⊗ B, is
the set A×B factored by the equivalence generated by

{(

(as, b), (a, sb)
)

: a ∈ A, b ∈ B, s ∈ S
}

.

For a ∈ A and b ∈ B we write a⊗ b for the equivalence class of (a, b).
A function θ from a left S-act A to a left S-act B is an S-morphism if (sa)θ = s(aθ)

for all s ∈ S and a ∈ A. The class of all left S-acts, S-Act, together with all S-
morphisms, forms a category S–Act; S-morphisms between right S-acts, Act-S and
the category Act–S of right S-acts and S-morphisms, are defined dually. As usual we
denote the category of sets and functions as Set. For a left S-act B, the map − ⊗ B
takes a right S-act A to a set A ⊗ B. We can lift − ⊗ B to a functor from Act–S

to Set by defining its value at θ to be θ ⊗ IB, where θ : A → A′ is an S-morphism
between right S-acts A and A′, and

(a⊗ b)(θ ⊗ IB) = aθ ⊗ b.

It is from this functor that the various notion of flatness are derived.
A left S-act B is weakly flat if the functor −⊗B preserves embeddings of right ideals

of S into S, flat if it preserves arbitrary embeddings of right S-acts, and strongly flat if it
preserves pullbacks (equivalently, equalisers and pullbacks [1]). Clearly flat left acts are
weakly flat and since embeddings are equalisers in Act–S, strongly flat left S-acts are
flat. It is unnecessary here to recap the categorical notions of pullback and equaliser,
since strongly flat acts may be characterised via interpolation conditions, explained in
the next section. We give the reader a warning that terminology has changed over the
years; in particular, left S-acts B such that − ⊗ B preserves equalisers and pullbacks
are called weakly flat in [6] and [19], flat in [7], and pullback flat in [14].

To describe the conditions on a monoid S such that F or WF are axiomatisable,
we need to look a little more carefully at equalities of the form a⊗ b = a′ ⊗ b′.

Lemma 2.1. [14] Let A be a right S-act and B a left S-act. Then for a, a′ ∈ A
and b, b′ ∈ B, a ⊗ b = a′ ⊗ b′ if and only if there exist s1, t1, s2, t2, . . . , sm, tm ∈ S,
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a2, . . . , am ∈ A and b1, . . . , bm ∈ B such that

b = s1b1
as1 = a2t1 t1b1 = s2b2
a2s2 = a3t2 t2b2 = s3b3

...
...

amsm = a′tm tmbm = b′.

The sequence presented in Lemma 2.1 will be called a tossing (or scheme) T of
length m over A and B connecting (a, b) to (a′, b′). The skeleton S = S(T ) of T , is
the sequence

S = (s1, t1, . . . , sm, tm) ∈ S2m.

The set of all skeletons is denoted by S. By considering trivial acts it is easy to see
that S consists of all even length sequences of elements of S.

We know therefore that if a, a′ ∈ A and b, b′ ∈ B, where A is a right S-act and
B a left S-act, then a ⊗ b = a′ ⊗ b′ in A ⊗ B if and only if there exists a tossing T
from (a, b) to (a′, b′) over A and B, with skeleton S, say. If the equality a⊗ b = a′ ⊗ b′

holds also in (aS ∪a′S)⊗B (certainly in the case B is flat) and is determined by some
tossing T ′ from (a, b) to (a′, b′) over aS ∪ a′S and B with skeleton S ′ = S(T ′) then we
say that T ′ is a replacement tossing for T , S ′ is a replacement skeleton for S and (in
case A = S) triples (a,S ′, a′) will be called replacement triples for (a,S, a′).

Theorem 2.2. [2] The following conditions are equivalent for a monoid S:
(1) the class WF is axiomatisable;
(2) the class WF is closed under formation of ultraproducts;
(3) for every skeleton S over S and a, a′ ∈ S there exist finitely many skele-

tons S1, . . . ,Sα(a,S,a′) over S, such that for any weakly flat left S-act B, if elements
(a, b), (a′, b′) of S × B are connected by a tossing T over S and B with S(T ) = S,
then (a, b) and (a′, b′) are connected by a tossing T ′ over aS ∪ a′S and B such that
S(T ′) = Sk, for some k ∈ {1 . . . , α(a,S, a′)}.

Theorem 2.3. [2] The following conditions are equivalent for a monoid S:
(1) the class F is axiomatisable;
(2) the class F is closed under formation of ultraproducts;
(3) for every skeleton S over S there exist finitely many replacement skeletons

S1, ...,Sβ(S) over S such that, for any right S-act A and any flat left S-act B, if
(a, b), (a′, b′) ∈ A × B are connected by a tossing T over A and B with S(T ) = S,
then (a, b) and (a′, b′) are connected by a tossing T ′ over aS ∪ a′S and B such that
S(T ′) = Sk, for some k ∈ {1, ..., β(S)} .

Theorems 2.2 and 2.3 are, sadly, rather hard to use directly. Clearly they imply that
for a monoid S, if F is an axiomatisable class, then so is WF . It is also worth pointing
out that if all left S-acts are weakly flat (flat), then WF (F) is axiomatisable. We
argue via indirect means in [2] that for an infinite null monoid, WF is not axiomatisable
(hence neither is F), whereas for the monoid of natural numbers under multiplication,
F (and hence WF) is axiomatisable, without all S-acts being flat. To date we do not
have an example of a monoid S such that WF is axiomatisable, but F is not. Perhaps
this is not entirely surprising, since it is in general difficult to determine when a weakly
flat S-act is flat, as demonstrated in [3]. The question of for which monoids S we have
that F = WF remains open.
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3. Strongly flat acts

We recall from Section 2 that a left S-act B is strongly flat if the functor−⊗B from
Act–S to Set preserves pullbacks. Strongly flat acts are, however, made rather more
manageable than flat and weakly flat acts, thanks to the following result of Stenström
[19]. The separating of Stenström’s condition into two separate conditions labelled (P)
and (E) first appears in [16].

Theorem 3.1. [19] A left S-act B is strongly flat if and only if B satisfies Condi-
tions (P) and (E):

(P): if x, y ∈ B and s, t ∈ S with sx = ty, then there is an element z ∈ B and
elements s′, t′ ∈ S such that x = s′z, y = t′z and ss′ = tt′;

(E): if x ∈ B and s, t ∈ S with sx = tx, then there is an element z ∈ B and s′ ∈ S
with x = s′z and ss′ = ts′.

We recall from [7] that for any s, t ∈ S, R(s, t) and r(s, t) are defined by

R(s, t) = {(u, v) ∈ S × S | su = tv}

and

r(s, t) = {u ∈ S | su = tu}

so that R(s, t) is a right S-subact of S×S, and r(s, t) is a right ideal of S. We say that
S satisfies Condition (FGR) (respectively Condition (FGr)), if R(s, t) (respectively
r(s, t)) is finitely generated for all s, t ∈ S. We remark that if every right ideal of S is
finitely generated, that is, S is right noetherian, then certainly S satisfies (FGr); we
see in Example 6.1 that a monoid can satisfy (FGr) without being right noetherian.

Stenström’s theorem, together with a straightforward use of ultraproducts, enables
us to prove the next result.

Theorem 3.2. [7] The following conditions are equivalent for a monoid S:
(1) SF is axiomatisable;
(2) SF is closed under ultraproducts;
(3) every ultrapower of S as a left S-act is strongly flat;
(4) S satisfies (FGr) and (FGR).

It is implicit in the proof of [7, Theorem 3.1] and made explicit in [8] that the class
of left S-acts satisfying Condition (E) is axiomatisable if and only if S satisfies (FGr),
and the class of left S-acts satisfying Condition (P) is axiomatisable if and only if S
satisfies (FGR).

As remarked in [7], any finite monoid, any group, and any inverse ω-chain are such
that SF is axiomatisable.

We will return to the next examples in later sections. The first and third were
arrived at via discussions with the author’s student, Lubna Shaheen.

Example 3.3. Let G be a group with identity ǫ, let 1 be an adjoined identity and
put S1 = G1. For the monoid S1 the class SF is axiomatisable.

Proof. By the remarks above, it is clear that (FGr) holds. To see that (FGR)
holds, we first observe that R(1, 1) = (1, 1)S1 and for any a ∈ G,

R(a, a) = (1, 1)S1 ∪ (1, ǫ)S1 ∪ (ǫ, 1)S1

and so is finitely generated.
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Suppose now that a ∈ G. We claim that withR = R(1, a) we have thatR = (a, 1)S1.
Clearly (a, 1) ∈ R so that (a, 1)S1 ⊆ R. On the other hand, if (u, v) ∈ R then as
u = 1u = av we have that (u, v) = (a, 1)v ∈ (a, 1)S1, so that R = (a, 1)S1 is mono-
genic. Dually, R(a, 1) = (1, a)S1.

Finally, if a, b ∈ Gwith a 6= b, putR = R(a, b) and notice that (1, b−1a), (a−1b, 1) ∈ R.
On the other hand we know that (1, 1) /∈ R and if (1, x) ∈ R with x ∈ G, then from
a1 = bx we have that x = b−1a and dually, if (y, 1) ∈ R then y = a−1b. Finally,
if h, k ∈ G and (h, k) ∈ R, then from ah = bk we obtain that h = a−1bk and so
(h, k) = (a−1b, 1)k. We have argued that R = (1, b−1a)S1 ∪ (a−1b, 1)S1 and hence is
finitely generated as required.

The result now follows from Theorem 3.2. �

Example 3.4. Let G and H be isomorphic groups with isomorphism from G to
H given by g 7→ g′. Let S2 be the semilattice {1, 0} of groups G1 = G,G0 = H and
connecting morphism ′. For the monoid S2 the class SF is axiomatisable.

Proof. We write the identity of G, hence of S2, as 1, and the identity of H as ǫ.
As in Example 3.3, certainly (FGr) holds since S2 is right noetherian. It remains to
show that (FGR) holds, whence from Theorem 3.2, SF is axiomatisable.

For any b ∈ G, and any z ∈ S2 we claim that R(z, b) = (1, b−1z)S2. Certainly
(1, b−1z) ∈ R(z, b). Conversely, if zu = bv for u, v ∈ S2, then v = b−1zu so that
(u, v) = (1, b−1z)u lies in (1, b−1z)S2. Dually, if a ∈ G then R(a, z) = (a−1z, 1)S2 for
any z ∈ S2.

Suppose now that a, b ∈ G; we claim that

R(a′, b′) = (1, b−1a)S2 ∪ (ǫ, b−1a)S2 ∪ (a−1b, ǫ)S2.

It is easy to check that (1, b−1a), (ǫ, b−1a) and (a−1b, ǫ) lie in R(a′, b′). If u, v ∈ G
and a′u = b′v, a′u′ = b′v, a′u = b′v′ or a′u′ = b′v′, we obtain that a′u′ = b′v′, and
so au = bv as ′ is an isomorphism. Hence (u, v) = (1, b−1a)u, (u′, v) = (ǫ, b−1a)u,
(u, v′) = (a−1b, ǫ)v and (u′, v′) = (1, b−1a)u′. Hence R(a′, b′) has three generators as
claimed. �

Example 3.5. Let S3 be a semilattice {1, 0} of groups G1, G0 with trivial connecting
homomorphism. If S3 satisfies (FGR), then G1 is finite.

Proof. Let a ∈ G0, so that for any u, v ∈ G1, (u, v) ∈ R(a, a). If R(a, a) is finitely
generated we must therefore have a finite sublist (c1, d1), . . . , (ck, dk) of generators of
R(a, a) such that

G1 ×G1 = (c1, d1)G1 ∪ . . . ∪ (ck, dk)G1.

For any g ∈ G1 we have that (g, 1) = (ci, di)h for some i ∈ {1, . . . , k} and h ∈ G1. It
follows that h = d−1

i and g = cid
−1
i . Hence G1 is finite.

�

4. Projective acts

A left S-act P is projective if given any diagram of left S-acts and S-morphisms

M N

P

φ

θ
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where φ : M → N is onto, there exists an S-morphism ψ : P → M such that the
diagram

M N

P

φ

θ
ψ

is commutative.
It is easy to see from the following structure theorem for projective acts, that

P ⊆ SF for any monoid S

Theorem 4.1. [15, 5] A left S-act P is projective if and only if P ∼=
∐

i∈I Sei,
where ei ∈ E for all i ∈ I 6= ∅.

The notion of left perfection appears in the characterisation of those monoids S
such that P is axiomatisable. We therefore pause to consider this concept.

A left S-act B is called a cover of a left S-act A if there exists an S-epimorphism
θ : B → A such that the restriction of θ to any proper S-subact of B is not an
epimorphism to A. If B is in addition projective, then B is a projective cover for
A. We remark here that the epimorphisms in S–Act are precisely the surjective S-
morphisms [14]. A monoid S is left perfect if every left S-act has a projective cover.

Left perfect monoids have a number of equivalent descriptions, involving conditions
which for convenience we present in the following list, together with related conditions
given here for future reference. We recall that a submonoid T of S is left unitary if
t, ts ∈ T implies that s ∈ T , and right collapsible if for any s, t ∈ T there exists r ∈ T
with sr = tr.

(A) Every left S-act satisfies the ascending chain condition for cyclic S-subacts.
(D) Every left unitary submonoid of S has a minimal left ideal generated by an

idempotent.
(MR)/(ML) The monoid S satisfies the descending chain condition for principal

right/left ideals.
(MR)/(ML) The monoid S satisfies the ascending chain condition for principal

right/left ideals.
(K) Every right collapsible submonoid contains a right zero.
Clearly (A) implies (ML); the converse is not true. It is shown in [10] that a monoid

may satisfy (ML) and (MR) but not (A).

Theorem 4.2. [6, 10, 13] The following conditions are equivalent for a monoid
S:

(1) S is left perfect;
(2) S satisfies Conditions (A) and (D);
(3) S satisfies Conditions (A) and (MR);
(4) S satisfies Conditions (A) and (K);
(5) SF = P.

As examples of left perfect monoids we give groups, or the monoids S1, S2 and S3

appearing in Examples 3.3, 3.4 and 3.5. Indeed if S is any semilattice {1, 0} of groups
G1, G0, then S is left perfect. For clearly S has MR: to see that S has Condition (A)
we make use of the following alternative characterisation of that condition.
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Proposition 4.3. [10] A monoid S satisfies Condition (A) if and only if for any
elements a1, a2, . . . of S, there exists n ∈ N such that for any i ∈ N, i ≥ n, there exists
ji ∈ N, ji ≥ i+ 1, such that

Saiai+1 . . . aji
= Sai+1 . . . aji

.

It is clear from Proposition 4.3 that any group has (A). If S is a semilattice {1, 0}
of groups G1 and G0, then consider any sequence a1, a2, . . . of elements of S. If only
finitely many of these elements lie in G0, then let n be chosen such that ai ∈ G1 for all
i ≥ n. Clearly Saiai+1 = Sai+1 = S for all i ≥ n. If the sequence contains infinitely
many elements from G0, then for any i ∈ N we can choose a ji ≥ i + 1 such that
aji

∈ G0; then Saiai+1 . . . aji
= G0 = Sai+1 . . . aji

. Thus S satisfies (A) and hence is
left perfect.

We have already observed that if S is a finite monoid, then conditions (FGR),
(FGr) hold, and clearly so does (MR). Moreover, if A is a cyclic S-act we must have
|A| ≤ |S|, from which it follows that S has condition (A) and hence is left perfect.
Consequently, SF = P is axiomatisable.

We remind the reader that a monoid S is local if S \ H1 is an ideal. Left perfect
monoids are local, as are the monoids satisfying conditions that appear in the next
chapter.

Lemma 4.4. The following conditions are equivalent for a monoid S:
(i) S is local;
(ii) H1 = D1;
(iii) if eD 1 for any e ∈ E, then e = 1.

Proof. Let A = S \H1.
(i) ⇒ (ii) If aD 1 for some a ∈ S, then there exists b ∈ S with aR bL1 and hence

c ∈ S with cb = 1. From the latter equation and the fact that S is local we deduce
that b ∈ H1. Now aR 1 and so ad = 1 for some d ∈ S, so that locality again gives that
a ∈ H1.

(ii) ⇒ (iii) This is clear, as any H-class contains at most one idempotent.
(iii) ⇒ (i) Let a ∈ A and suppose that ab /∈ A, so that abH 1. Then abc = 1 for

some c ∈ S. Putting d = bc we have that da ∈ E and 1, a, d and da are related as in
the egg-box picture below

1 a
d da

By our assumption, da = 1, so that aH 1, a contradiction. Hence ab ∈ A and A is a
right ideal. The dual argument completes the proof.

�

The next result is folklore.

Lemma 4.5. Let S be a monoid satisfying (MR). Then S is local.

Proof. Let e ∈ E with eD 1. By [9, Proposition 2.3.5], there is an element a ∈ S
with inverse a′ such that 1 = a′a and e = aa′, so that 1, e, a, a′ are related as in the
egg-box picture below

1 a′

a e
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From aL 1 we obtain that an L 1 for all n ∈ N. Clearly

aS ⊇ a2S ⊇ . . . .

Since S has (MR), anS = an+1S for some n. It follows that an = an+1t for some t ∈ S,
whence 1 = at since an L 1. This tells us that 1R aR e, hence 1 = e. From Lemma 4.4
we deduce that S is local. �

For an example of a monoid that is local but which does not satisfy (MR), we cite
an inverse ω-chain, and also we refer the reader to our final section.

Our interest in left perfect monoids lies in the next result, due to Stepanova.

Theorem 4.6. [20], cf. [7, 2] The following conditions are equivalent for a monoid
S:

(1) every ultrapower of the left S-act S is projective;
(2) SF is axiomatisable and S is left perfect.
(3) P is axiomatisable.

It follows that for any finite monoid, any group, and for the semilattices of groups
S1 or S2, P is axiomatisable. On the other hand, if S3 is a semilattice of groups as in
Example 3.5 with G1 infinite, then as shown in that example, SF is not axiomatisable,
but as argued above, S is left perfect. As remarked in [7], an inverse ω-chain is an
example of a monoid such that SF is axiomatisable, but clearly P is not, as the monoid
fails to satisfy (MR) and hence is not left perfect. We give a non-local example of a
monoid such that SF but not P is axiomatisable in Section 6.

5. Free acts

We remind the reader that a left S-act F is free (on a subset X, in S–Act) if and
only if for any left S-act A and function θ : X → A, there is a unique S-morphism
θ : F → A such that ιθ = θ, where ι : X → F is the inclusion function.

For any set X and element x ∈ S, the left S-act Sx consists of all formal symbols
sx, where s ∈ S and x ∈ X, with action given by t(sx) = (ts)x, for any s, t ∈ S and
x ∈ X. Clearly Sx is isomorphic to S, where S is regarded as a left ideal.

Theorem 5.1. [14] A left S-act F is free on X if and only if F ∼=
∐

x∈X Sx.

Notice from the above that a free left S-act is isomorphic to a coproduct of copies
of the left S-act S = S1, so that free left S-acts are clearly projective.

We now present a rather curious condition, that is crucial in determining those
monoids S such that Fr is axiomatisable. To state and use our condition, it is conve-
nient to make use of the preorders ≤R (≤L) on a monoid S, defined by the rule that
a≤R b (a≤L b) if and only if a = bs (a = sb) for some s ∈ S. Clearly, the equivalence
relations associated with ≤R and ≤L are Green’s relations R and L, respectively. Let
e ∈ E and a ∈ S. We say that a = xy is an e-good factorisation of a through x if
y 6≤Rw for any w with e = xw and wL e.

A monoid S satisfies condition (F) if, for any e ∈ E with e 6= 1, there is a finite set
Fe ⊆ S such that every a ∈ S has an e-good factorisation through some u ∈ Fe. We
remark that condition (F) is only imposing restrictions on those elements a such that
a≤R e, that is, a ∈ eS. For any a ∈ S may be written as a = 1 a; if a 6≤R e, then this
factorisation is easily seen to be e-good, since if e = 1 s then we must have s = e, and
by assumption, a 6≤R e.
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If S is unipotent (that is, E = {1}), then S satisfies (F) vacuously. Any finite
monoid satisfies (F), for let e ∈ E with e 6= 1 and put Fe = S. Then any a ∈ S can be
written as a = a 1 and as by Lemma 4.5 S is local, 1 6≤R v for any v ∈ Le. Hence S
satisfies (F).

Lemma 5.2. Let S be a monoid satisfying condition (F). Then S is local.

Proof. Suppose that e ∈ E and eD 1. By [9, Proposition 2.3.5] there is an element
a ∈ S with inverse a′ such that 1 = aa′ and a′a = e. If e 6= 1 then by assumption that
S satisfies (F), a′ has an e-good factorisation through u, say. Suppose that a′ = uv is
such a factorisation. Then e = a′a = uva and as e≤L va≤LaL e we have that eL va.
From 1R a we see that v = v 1R va (and so in particular v≤R va), contradicting the
assumption that a′ = uv is an e-good factorisation through u. We conclude that e = 1
so that by Lemma 4.4, S is local. �

At the end of this section we demonstrate that a monoid can be local without
satisfying (F).

The question of axiomatisability of Fr was solved in some special cases by Stepanova
in [20], and most recently by the author as below.

Theorem 5.3. [8] The following conditions are equivalent for a monoid S:
(1) every ultrapower of the left S-act S is free;
(2) P is axiomatisable and S satisfies (F);
(3) Fr is axiomatisable.

We say that the group of units H1 of a monoid S has finite right index if there
exist u1, . . . , un ∈ S such that S = u1H1 ∪ . . . unH1. It is immediate that if H1 has
finite right index, then S has only finitely many R-classes Ru1

, . . . , Run
and hence only

finitely many right ideals. The following corollary is now immediate from Lemma 4.5.

Corollary 5.4. Let S be a monoid in which H1 has finite right index. Then S
satisfies Condition (MR) and is local.

Lemma 5.5. Let S be a monoid in which H1 has finite right index. Then S satisfies
condition (F).

Proof. Since H1 has finite right index in S we may write S as S = u1H1∪ . . . unH1

for some u1, . . . , un ∈ S. Let e ∈ E with e 6= 1 and put Fe = {u1, . . . , un}. Let a ∈ S.
By assumption may write a as a = uig for some g ∈ H1. If e = uiw where wL e, and
if g≤Rw, then since g ∈ H1 we deduce that eLwR 1, contradicting the fact that S is
local. Hence the factorisation a = uig is e-good. �

The converses to both Corollary 5.4 and Lemma 5.5 fail, as we see below and in
the next section.

For some restricted classes of monoids, we can simplify the condition given in The-
orem 5.3.

Proposition 5.6. [8] Let S be a monoid such that

S \R1 = s1S ∪ . . . ∪ smS

for some s1, . . . , sm ∈ S. Then Fr is an axiomatisable class if and only if P is ax-
iomatisable and H1 has finite right index in S.

In the case where S is inverse, we can simplify further.
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Corollary 5.7. [20] Let S be an inverse monoid. Then Fr is an axiomatisable
class if and only if P is axiomatisable and H1 has finite right index in S.

Let us end this section by considering some examples. By earlier remarks we have
that Fr is axiomatisable for S finite or S a group. For the monoids S1 and S2 of
Examples 3.3 and 3.4, we have remarked that P is axiomatisable. For S1, H1 = {1}, so
that the index of H1 is |S|, hence by Corollary 5.7, Fr is axiomatisable if and only if
G is finite. Thus if G is infinite, we have an example of a monoid which is left perfect
but such that the index of H1 is infinite and (F) fails, and which is such that P is
axiomatisable but Fr is not. For the monoid S2 we have that H1 = G0 and 1G0 = G0,
ǫG0 = G1, so that H1 has finite right index and Fr is axiomatisable.

6. Examples

The aim of this section is to present two monoids demonstrating the independence
of some of the conditions we have encountered in this paper. Our examples are the
bicyclic monoid B and the monoid D1, where D = Z×Z with multiplication given by
the rule

(a, b)(c, d) = (a− b+ max{b, c}, d− c+ max{b, c}).

The semigroup D first appears in the papers of Warne in the 1960’s, dubbed in [21]
the extended bicyclic semigroup. It is easy to see that

E(D) = {(a, a) | a ∈ Z}

forming a chain

. . . < (2, 2) < (1, 1) < (0, 0) < (−1,−1) < (−2,−2) < . . .

Moreover, D is regular, hence inverse, with

(a, b)′ = (b, a)

for any (a, b) ∈ D. It then follows that for any (a, b), (c, d) ∈ D,

(a, b)D ⊆ (c, d)D if and only if a ≥ c

and dually,
D(a, b) ⊆ D(c, d) if and only if b ≥ d.

As Warne remarks in [21], D is bisimple. It is perhaps useful to point out that for any
(a, b), (c, d) ∈ D, if (a, b)(c, d) = (x, y), then x ≥ a and y ≥ d.

The semigroup D contains B = N0 × N0 as an inverse subsemigroup. Certainly B
is a monoid (with identity (0, 0)), but D is not. We therefore adjoin an identity and
consider D1; to avoid confusion with the integer 1, we denote the adjoined identity
of D1 by ǫ. Note that for any (a, b), (c, d) ∈ D, (a, b)≤R (c, d) in D1 if and only if
(a, b)≤R (c, d) in D, with the dual comment valid for principal left ideals.

The monoid B is an old friend to semigroup theorists. It is well known to be
bicyclic, and to have a monoid presentation given by

B = 〈a, b : ab = 1〉.

By contrast, D appears only sporadically in the literature. We see by a comment above
that D cannot be finitely generated, either as a semigroup or as an inverse semigroup.
For if T = {(a1, b1), . . . , (an, bn)} is a finite subset of D, then choosing z ∈ Z strictly
smaller than any ai or bi, it is impossible to write (z, z) as a product of elements of T
and their inverses.
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The following example shows us that D1 has condition (F), but is not left perfect,
since both condition (A) and (MR) fail. Moreover, since (MR) fails, clearly the group
of units {ǫ} does not have finite right index in D1. Finally, D1 satisfies one but not
both conditions required for SF to be axiomatisable.

Example 6.1. The extended bicyclic monoid D1 satisfies (F) and (FGr). On the
other hand, D1 does not satisfy (FGR) and satisfies none of the chain conditions
(MR),(ML),(MR) and (ML).

Proof. We show first that D1 satisfies (F). Let (a, a) be a non-identity idempotent
of D1 and put

F(a,a) = {1, (a+ 1, a+ 1), (a, a+ 1)}.

As commented in Section 5, any element that is not ≤R-related to (a, a) has an (a, a)-
good factorisation through 1. Suppose now that (b, c)≤R (a, a) in D1, so that b ≥ a.
If b > a, then

(b, c) = (a+ 1, a+ 1)(b, c)

and as (a, a) /∈ (a + 1, a + 1)D1, this factorisation of (b, c) is (a, a)-good. Finally,
consider (a, d) ∈ D. We have

(a, d) = (a, a+ 1)(a, d− 1)

and this factorisation is (a, a)-good. For, if

(a, a) = (a, a + 1)(p, q)

with (p, q)L (a, a) then q = a and we are forced to have p = a + 1. But then

(a, d− 1) 6≤R (p, q).

Hence every element of D1 has an (a, a)-good factorisation through an element of F(a,a),
so that D1 satisfies (F).

Since we have the strict doubly infinite chain of principal right ideals

. . . ⊂ (2, 2)D1 ⊂ (1, 1)D1 ⊂ (0, 0)D1 ⊂ (−1,−1)D1 ⊂ . . .

it is clear that both (MR) and (MR) fail; dually, (ML) and (ML) fail.

To see that (FGr) holds, we remark first that r(ǫ, ǫ) = D1 so is principal.
Suppose now that r

(

ǫ, (a, b)
)

6= ∅. Clearly ǫ /∈ r
(

ǫ, (a, b)
)

, so that we must have
(s, t) ∈ D with

(s, t) = (a, b)(s, t) = (a− b+ max{b, s}, t− s+ max{b, s}).

Consequently, a = b. It is then easy to see that r
(

ǫ, (a, b)
)

= (a, a)D1. The dual

argument gives that r
(

(a, b), ǫ
)

is either empty or principal, for any (a, b) ∈ D.

Finally, suppose that r = r
(

(a, b), (c, d)
)

6= ∅ for some (a, b), (c, d) ∈ D. If ǫ ∈ r,
then (a, b) = (c, d), so that r = D1. Otherwise, we must have that (a, b)(s, t) = (c, d)(s, t)
for some (s, t) ∈ D. Then

a− b+ max{b, s} = c− d+ max{d, s}

and

t− s+ max{b, s} = t− s + max{d, s},

so that max{b, s} = max{d, s} and a − b = c − d. Further, if there exists (s, t) ∈ r
with s < b and s < d, then (a, b) = (c, d), a contradiction. Let u = max{b, d}. Then
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(u, u) ∈ r and if (s, t) ∈ r then s ≥ u so that (s, t) ∈ (u, u)D1 and r = (u, u)D1 is
finitely generated as required.

On the other hand, D1 does not satisfy (FGR). To see this, consider R = R
(

(0, 0), (0, 1)
)

;
certainly (ǫ, ǫ) /∈ R. Notice that for any n ∈ N,

(0, 0)(−n,−n) = (0, 0) = (0, 1)(−n,−n− 1)

so that
(

(−n,−n), (−n,−n − 1)
)

∈ R. If R were finitely generated, say R = UD1 for
some finite U ⊆ R, then we could choose n ∈ N with −n < t for any t ∈ Z such that
(

(α, (t, s)
)

or
(

(t, s), α
)

lies in U , for any α ∈ D1 and any s ∈ Z. Since U generates R,
(

(−n,−n), (−n,−n − 1)
)

= (α, β)γ

for some (α, β) ∈ U and γ ∈ D1. Since we cannot have α = β = ǫ, we contradict the
choice of n. We deduce that R cannot be finitely generated. �

We commented in Section 4 that an inverse ω-chain C is such that SF is axioma-
tisable, but since C is not left perfect, P is not. The bicyclic monoid provides us with
a non-local example having the same properties.

Example 6.2. The bicyclic monoid B has (FGR) and (FGr), is not local and is
not left perfect.

Proof. Since every left ideal of B is principal, certainly (FGr) holds. On the other
hand B does not have (MR), and so cannot be left perfect. Moreover, being bisimple
and possessing an inverse ω-chain of idempotents, B is not local.

It remains to prove that (FGR) holds for B. To this end, let (a, b), (c, d) ∈ B and
let R = R

(

(a, b), (c, d)
)

.
We consider first the case where a 6= c; without loss of generality we assume that

a > c. Observe that

(a, b)(0, 0) = (a, b) = (c, d)(d+ (a− c), b)

so that
(

(0, 0), (d+ (a− c), b)
)

B ⊆ R.

Conversely, suppose that
(

(x, y), (u, v)
)

∈ R. Then

(a, b)(x, y) = (c, d)(u, v),

telling us that

a− b+ max{b, x} = c− d+ max{d, u} and y − x+ max{b, x} = v − u+ max{d, u}.

We therefore have that
c− d+ max{d, u} ≥ a > c

whence u > d, so that

a− b+ max{b, x} = c− d+ u and y − x + max{b, x} = v.

Clearly (x, y) = (0, 0)(x, y), and

(d+ (a− c), b)(x, y) = (d+ (a− c) − b+ max{b, x}, y − x+ max{b, x}) = (u, v)

so that
(

(x, y), (u, v)
)

∈
(

(0, 0), (d+ (a− c), b)
)

B

and we deduce that in this case,

R =
(

(0, 0), (d+ (a− c), b)
)

B
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is finitely generated, indeed monogenic.
We now turn our attention to the case where a = c. For any s ≤ b and s′ ≤ d we

define ws,s′ =max{b− s, d− s′}. Notice that

(a, b)(s, ws,s′ − (b− s)) = (a, d)(s′, ws,s′ − (d− s′))

so that putting

U =
{(

(s, ws,s′ − (b− s)), (s′, ws,s′ − (d− s′))
)

| s ≤ b, s′ ≤ d
}

we have that UB ⊆ R.
For the converse, suppose that

(

(x, y), (u, v)
)

∈ R. Then (a, b)(x, y) = (a, d)(u, v)
and so

max{b, x} − b = max{d, u} − d and y − x + max{b, x} = v − u+ max{d, u}.

The first equation tells us that b ≥ x if and only if d ≥ u.
Suppose first that b < x and d < u. Then x− b = u−d and y = v. With s = s′ = 0

we have that w0,0 = max{b, d}; without loss of generality we assume that w0,0 = b.
Then

(

(0, 0), (0, b− d)
)

∈ U and in this case,

(

(x, y), (u, v)
)

=
(

(0, 0), (0, b− d)
)

(x, y) ∈ UB.

On the other hand, if x ≤ b and u ≤ d, then y − x + b = v − u+ d and

(

(x, wx,u − (b− x)
)

, (u, wx,u − (d− u)
)

∈ U.

Without loss of generality suppose that wx,u = b − x, so that b − x ≥ d − u. Then
(

(x, 0), (u, (b− x) − (d− u)
)

∈ U , that is,
(

(x, 0), (u, v − y)
)

∈ U and

(

(x, y), (u, v)
)

=
(

(x, 0), (u, v − y)
)

(0, y) ∈ UB.

We conclude that UB = R and that R is finitely generated as required.
�

We promised at the end of the introduction to make clear the connections between
the five conditions FGR + FGr, left perfection, (F), H1 having finite right index and
locality. This is best achieved in tabular form. The final column contains a reference
to a result or a counterexample. One open question remains: if H1 has finite right
index, is S left perfect?
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FGR + FGr 6⇒ left perfect B
FGR + FGr 6⇐ left perfect S3 with G1 infinite
FGR + FGr 6⇒ Condition (F) S1 with G infinite
FGR + FGr 6⇐ Condition (F) D1

FGR + FGr 6⇒ H1 has finite right index S1 with G infinite
FGR + FGr 6⇐ H1 has finite right index S3 with G1 infinite and G0 finite
FGR + FGr 6⇒ local B
FGR + FGr 6⇐ local S3 with G1 infinite

left perfect 6⇒ Condition (F) S1 with G infinite
left perfect 6⇐ Condition (F) D1

left perfect 6⇒ H1 has finite right index S1 with G infinite

left perfect ⇐
?

H1 has finite right index
left perfect ⇒ local Lemma 4.5
left perfect 6⇐ local D1

Condition (F) 6⇒ H1 has finite right index D1

Condition (F) ⇐ H1 has finite right index Lemma 5.5
Condition (F) ⇒ local Lemma 5.2
Condition (F) 6⇐ local S1 with G infinite

H1 has finite right index ⇒ local Corollary 5.4
H1 has finite right index 6⇐ local S1 with G infinite

The condition that H1 has finite right index restricts severely the right ideal struc-
ture of the monoid. We have observed in Lemma 5.4 that it implies (MR), so in order
to show that it implies left perfection we are left with the question of whether or not
it implies Condition (A). As a first attempt in this direction we present our last result.

Lemma 6.3. Let S be a monoid such that for any a ∈ S there exist n, k ∈ N with
an L an+k. If H1 has finite right index, then S satisfies (ML).

Proof. Suppose that H1 has finite right index in S, so that certainly S has only
finitely many R-classes. If we have an ascending chain of principal left ideals

Sa1 ⊆ Sa2 ⊆ . . .

then there must be an R-class R containing infinitely many elements ai. Pick m such
that am ∈ R and let ℓ ≥ m. Then there exists h ≥ ℓ with ah ∈ R, so that from

Sam ⊆ Saℓ ⊆ Sah

we obtain
SamS ⊆ SaℓS ⊆ SahS

whence SamS = SaℓS.
From Sam ⊆ Saℓ we have that am = uaℓ for some u ∈ S, and from SamS = SaℓS

there are elements p, q ∈ S with aℓ = pamq. It follows that aℓ = puaℓq = (pu)raℓq
r for

all r ∈ N.
By hypothesis there exist n, k ∈ N with (pu)n L (pu)n+k. Calculating, we have that

aℓ = (pu)naℓq
n L (pu)n+kaℓq

n = (pu)k(pu)naℓq
n = (pu)kaℓ = (pu)k−1puaℓ = (pu)k−1pam,

whence Sam = Saℓ and the chain terminates at Sam.
�
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