

Structure theorems for weakly B -abundant semigroups

Y. H. Wang

Regular semigroups

Definition

- An element a of a semigroup S is called *regular* if there exists $x \in S$ such that $axa = a$.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

Regular semigroups

Definition

- An element a of a semigroup S is called *regular* if there exists $x \in S$ such that $axa = a$.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

Regular semigroups

Definition

- An element a of a semigroup S is called *regular* if there exists $x \in S$ such that $axa = a$.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

Regular semigroups

Definition

- An element a of a semigroup S is called *regular* if there exists $x \in S$ such that $axa = a$.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

Regular semigroups

Definition

- An element a of a semigroup S is called *regular* if there exists $x \in S$ such that $axa = a$.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

Green's equivalences

Definition

- Given a semigroup S , J.A. Green defined the following relations on S in 1951. For any $a, b \in S$

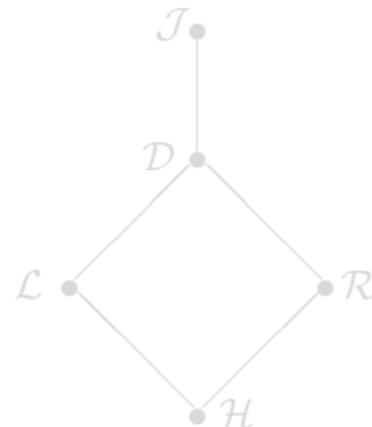
$$a \mathcal{L} b \Leftrightarrow S^1 a = S^1 b,$$

$$a \mathcal{R} b \Leftrightarrow a S^1 = b S^1,$$

$$a \mathcal{J} b \Leftrightarrow S^1 a S^1 = S^1 b S^1,$$

$$\mathcal{H} = \mathcal{L} \wedge \mathcal{R}, \quad \mathcal{D} = \mathcal{L} \vee \mathcal{R}.$$

For Green's equivalences, we have the following figure.



Green's equivalences

Definition

- Given a semigroup S , J.A. Green defined the following relations on S in 1951. For any $a, b \in S$

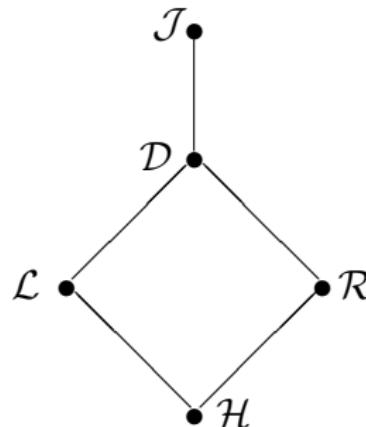
$$a \mathcal{L} b \Leftrightarrow S^1 a = S^1 b,$$

$$a \mathcal{R} b \Leftrightarrow a S^1 = b S^1,$$

$$a \mathcal{J} b \Leftrightarrow S^1 a S^1 = S^1 b S^1,$$

$$\mathcal{H} = \mathcal{L} \wedge \mathcal{R}, \quad \mathcal{D} = \mathcal{L} \vee \mathcal{R}.$$

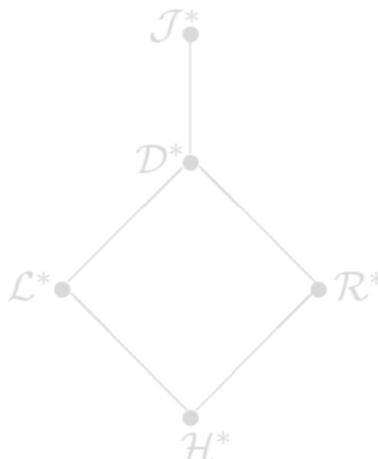
For Green's equivalences, we have the following figure.



Green's star equivalences

Definition

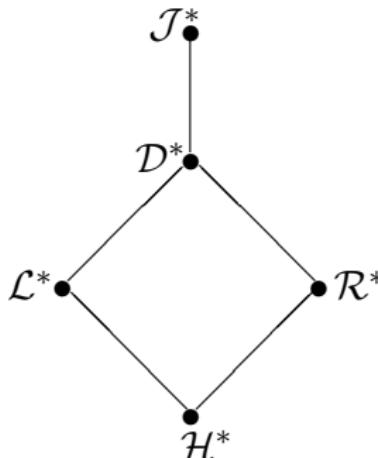
- Given a semigroup S , for any $a, b \in S$,
 $a \mathcal{L}^* b$ if $a \mathcal{L} b$ in a semigroup T such that $S \subseteq T$.
Dually, The relation \mathcal{R}^* on S is defined.
 \mathcal{D}^* denotes the join of the relations \mathcal{L}^* and \mathcal{R}^* .
 \mathcal{H}^* denotes the intersection of the relations \mathcal{L}^* and \mathcal{R}^* .
- Also, we have the following diagram.



Green's star equivalences

Definition

- Given a semigroup S , for any $a, b \in S$,
 $a \mathcal{L}^* b$ if $a \mathcal{L} b$ in a semigroup T such that $S \subseteq T$.
Dually, The relation \mathcal{R}^* on S is defined.
 \mathcal{D}^* denotes the join of the relations \mathcal{L}^* and \mathcal{R}^* .
 \mathcal{H}^* denotes the intersection of the relations \mathcal{L}^* and \mathcal{R}^* .
- Also, we have the following diagram.



Abundant semigroups

Definition

- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S , then a^* and a^\dagger denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (IC) if for each element a in S and for some a^\dagger , a^* , there exists a bijection $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e .
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (IC) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* if S satisfies the condition (IC) and its set of idempotents forms a semilattice.

Abundant semigroups

Definition

- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S , then a^* and a^\dagger denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (IC) if for each element a in S and for some a^\dagger , a^* , there exists a bijection $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e .
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (IC) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* if S satisfies the condition (IC) and its set of idempotents forms a semilattice.

Abundant semigroups

Definition

- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S , then a^* and a^\dagger denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (IC) if for each element a in S and for some a^\dagger , a^* , there exists a bijection $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e .
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (IC) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* if S satisfies the condition (IC) and its set of idempotents forms a semilattice.

Abundant semigroups

Definition

- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S , then a^* and a^\dagger denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (IC) if for each element a in S and for some a^\dagger , a^* , there exists a bijection $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e .
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (IC) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* if S satisfies the condition (IC) and its set of idempotents forms a semilattice.

$\tilde{\mathcal{L}}_U, \tilde{\mathcal{R}}_U$ equivalences

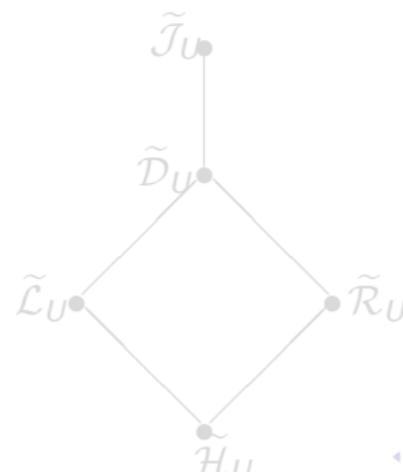
Definition

- Given a semigroup S , M.V. Lawson studied the subset of all its idempotents U instead of the whole idempotent set $E(S)$ and furthermore generalized Green's star relations. For any $a, b \in S$,

$$a \tilde{\mathcal{L}}_U b \Leftrightarrow (\forall e \in U)(ae = a \text{ if and only if } be = b),$$

$$a \tilde{\mathcal{R}}_U b \Leftrightarrow (\forall e \in U)(ea = a \text{ if and only if } eb = b),$$

$$\tilde{\mathcal{H}}_U = \tilde{\mathcal{L}}_U \wedge \tilde{\mathcal{R}}_U, \quad \tilde{\mathcal{D}}_U = \tilde{\mathcal{L}}_U \vee \tilde{\mathcal{R}}_U.$$



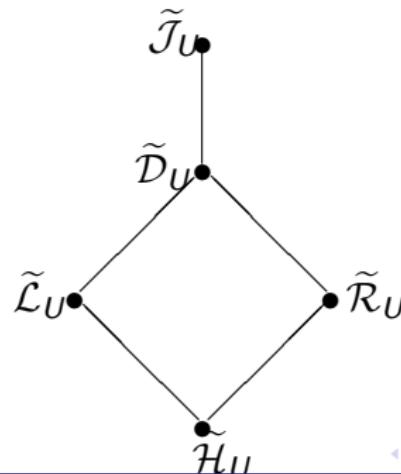
Definition

- Given a semigroup S , M.V. Lawson studied the subset of all its idempotents U instead of the whole idempotent set $E(S)$ and furthermore generalized Green's star relations. For any $a, b \in S$,

$$a \tilde{\mathcal{L}}_U b \Leftrightarrow (\forall e \in U)(ae = a \text{ if and only if } be = b),$$

$$a \tilde{\mathcal{R}}_U b \Leftrightarrow (\forall e \in U)(ea = a \text{ if and only if } eb = b),$$

$$\tilde{\mathcal{H}}_U = \tilde{\mathcal{L}}_U \wedge \tilde{\mathcal{R}}_U, \quad \tilde{\mathcal{D}}_U = \tilde{\mathcal{L}}_U \vee \tilde{\mathcal{R}}_U.$$



Weakly U -abundant semigroups

Definition

- A semigroup S with subset of all its idempotents U is said to be *weakly U -abundant* if each $\tilde{\mathcal{L}}_U$ -class and each $\tilde{\mathcal{R}}_U$ -class contains an idempotent in U .
- A weakly U -abundant semigroup S satisfies the *congruence condition* (C) if $\tilde{\mathcal{L}}_U$ is a right congruence and $\tilde{\mathcal{R}}_U$ is a left congruence.

Notation

- $B :=$ a band
- $a^\dagger :=$ a typical idempotent in $\tilde{\mathcal{R}}_a \cap B$
- $a^* :=$ a typical idempotent in $\tilde{\mathcal{L}}_a \cap B$
- $(e) :=$ the principal order ideal generated by $e \in B$
 - $= \{x \in B : x \leq e\}$
 - $= \{x \in B : ex = xe = x\}$

Weakly U -abundant semigroups

Definition

- A semigroup S with subset of all its idempotents U is said to be *weakly U -abundant* if each $\tilde{\mathcal{L}}_U$ -class and each $\tilde{\mathcal{R}}_U$ -class contains an idempotent in U .
- A weakly U -abundant semigroup S satisfies the *congruence condition* (C) if $\tilde{\mathcal{L}}_U$ is a right congruence and $\tilde{\mathcal{R}}_U$ is a left congruence.

Notation

- $B :=$ a band
- $a^\dagger :=$ a typical idempotent in $\tilde{\mathcal{R}}_a \cap B$
- $a^* :=$ a typical idempotent in $\tilde{\mathcal{L}}_a \cap B$
- $(e) :=$ the principal order ideal generated by $e \in B$
 - $= \{x \in B : x \leq e\}$
 - $= \{x \in B : ex = xe = x\}$

Weakly U -abundant semigroups

Definition

- A semigroup S with subset of all its idempotents U is said to be *weakly U -abundant* if each $\tilde{\mathcal{L}}_U$ -class and each $\tilde{\mathcal{R}}_U$ -class contains an idempotent in U .
- A weakly U -abundant semigroup S satisfies the *congruence condition* (C) if $\tilde{\mathcal{L}}_U$ is a right congruence and $\tilde{\mathcal{R}}_U$ is a left congruence.

Notation

- $B :=$ a band
 $a^\dagger :=$ a typical idempotent in $\tilde{R}_a \cap B$
 $a^* :=$ a typical idempotent in $\tilde{L}_a \cap B$
 $\langle e \rangle :=$ the principal order ideal generated by $e \in B$
 $= \{x \in B : x \leq e\}$
 $= \{x \in B : ex = xe = x\}$

Weakly B -abundant semigroups

Definition

Let S be a weakly B -abundant semigroup.

- S satisfies the *condition (PIC)* if for each $a \in S$ and for any a^\dagger, a^* , there is an isomorphism $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$.
- S satisfies the *condition (IC)* (with respect to B) if for any $a \in S$ and some a^*, a^\dagger , there exists an order isomorphism $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ such that $xa = a(x\alpha)$.
- S satisfies the *condition (WIC)* (with respect to B) if for any $a \in S$ and some a^*, a^\dagger , if $x \in \langle a^\dagger \rangle$ then there exists $y \in B$ with $xa = ay$, and dually, if $z \in \langle a^* \rangle$ then there exists $t \in B$ with $ta = az$.

Weakly B -abundant semigroups

Definition

Let S be a weakly B -abundant semigroup.

- S satisfies the *condition (PIC)* if for each $a \in S$ and for any a^\dagger, a^* , there is an isomorphism $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$.
- S satisfies the *condition (IC)* (with respect to B) if for any $a \in S$ and some a^*, a^\dagger , there exists an order isomorphism $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ such that $xa = a(x\alpha)$.
- S satisfies the *condition (WIC)* (with respect to B) if for any $a \in S$ and some a^*, a^\dagger , if $x \in \langle a^\dagger \rangle$ then there exists $y \in B$ with $xa = ay$, and dually, if $z \in \langle a^* \rangle$ then there exists $t \in B$ with $ta = az$.

Weakly B -abundant semigroups

Definition

Let S be a weakly B -abundant semigroup.

- S satisfies the *condition (PIC)* if for each $a \in S$ and for any a^\dagger, a^* , there is an isomorphism $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^\dagger \rangle$.
- S satisfies the *condition (IC)* (with respect to B) if for any $a \in S$ and some a^*, a^\dagger , there exists an order isomorphism $\alpha : \langle a^\dagger \rangle \rightarrow \langle a^* \rangle$ such that $xa = a(x\alpha)$.
- S satisfies the *condition (WIC)* (with respect to B) if for any $a \in S$ and some a^*, a^\dagger , if $x \in \langle a^\dagger \rangle$ then there exists $y \in B$ with $xa = ay$, and dually, if $z \in \langle a^* \rangle$ then there exists $t \in B$ with $ta = az$.

Structure theorems for weakly B -abundant semigroups

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R. Gould showed that a weakly B -abundant semigroup S with (C) and (WIC)(res. (IC)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly B -abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly B -abundant semigroup S with (C) and (PIC) if and only if it is the spined product of W_B with a weakly B/\mathcal{D} -ample semigroup.

Structure theorems for weakly B -abundant semigroups

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R. Gould showed that a weakly B -abundant semigroup S with (C) and (WIC)(res. (IC)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly B -abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly B -abundant semigroup S with (C) and (PIC) if and only if it is the spined product of W_B with a weakly B/\mathcal{D} -ample semigroup.

Structure theorems for weakly B -abundant semigroups

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R. Gould showed that a weakly B -abundant semigroup S with (C) and (WIC)(res. (IC)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly B -abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly B -abundant semigroup S with (C) and (PIC) if and only if it is the spined product of W_B with a weakly B/\mathcal{D} -ample semigroup.

Structure theorems for weakly B -abundant semigroups

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R. Gould showed that a weakly B -abundant semigroup S with (C) and (WIC)(res. (IC)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly B -abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly B -abundant semigroup S with (C) and (PIC) if and only if it is the spined product of W_B with a weakly B/\mathcal{D} -ample semigroup.

Structure theorems for weakly B -abundant semigroups

- In 2008, G.M.S. Gomes and V.A.R. Gould constructed S_B from a band B , which is a \bar{B} -fundamental weakly \bar{B} -abundant semigroup with (C), where $\bar{B} = \{(\rho_e, \lambda_e) : e \in B\}$.

Lemma (Gomes and Gould) Let S be a weakly B -abundant semigroup with (C). Then $\theta : S \rightarrow S_B$ given by

$$a\theta = (\alpha_a, \beta_a),$$

where for all $x \in B^1$, $L_x\alpha_a = L_{(xa)^*}$ and $R_x\beta_a = R_{(ax)^\dagger}$, is an admissible homomorphism with kernel μ_B . Moreover, $\theta|_B : B \rightarrow \bar{B}$ is an isomorphism.

Structure theorems for weakly B -abundant semigroups

- In 2008, G.M.S. Gomes and V.A.R. Gould constructed S_B from a band B , which is a \bar{B} -fundamental weakly \bar{B} -abundant semigroup with (C), where $\bar{B} = \{(\rho_e, \lambda_e) : e \in B\}$.

Lemma (Gomes and Gould) Let S be a weakly B -abundant semigroup with (C). Then $\theta : S \rightarrow S_B$ given by

$$a\theta = (\alpha_a, \beta_a),$$

where for all $x \in B^1$, $L_x\alpha_a = L_{(xa)^*}$ and $R_x\beta_a = R_{(ax)^\dagger}$, is an admissible homomorphism with kernel μ_B . Moreover, $\theta|_B : B \rightarrow \bar{B}$ is an isomorphism.

Theorem 1 Let S be a weakly B -abundant semigroup with (C) and δ be the smallest admissible Ehresmann congruence on S . The mapping $\phi : a \mapsto (a\theta, a\delta)$ is an isomorphism from a weakly B -abundant semigroup S with (C) to the spined product $S_B * S/\delta$ of S_B and S/δ with respect to S_B/δ_1 , δ_1^\natural and ψ , where $\psi : S/\delta \rightarrow S_B/\delta_1$ defined by $s\delta\psi = s\theta\delta_1$ for any $s \in S$ is an admissible homomorphism and $\psi|_{B/\delta} : B/\delta \rightarrow \bar{B}/\delta_1$ is an isomorphism, if and only if

- (i) for any $a, b \in S$, $a\delta b$ implies $a\theta\delta_1 b\theta$ and $e\delta f$ if and only if $e\theta\delta_1 f\theta$ for any $e, f \in B$;
- (ii) $\delta \cap \mu_B = \iota$, where $\mu_B = \ker\theta$;
- (iii) if $x \in S_B$ and $(x, s\delta) \in S_B * S/\delta$ for some $s \in S$ then there exists $t \in S$ such that $x = t\theta$ and $t\delta = s\delta$.

Structure theorems for weakly B -abundant semigroups

Definition A weakly B -abundant semigroup S is said to be a *weakly B -abundant semigroup with (C) and (N)* if S satisfies the congruence condition (C) and the set of distinguished idempotents is a normal band.

Lemma Let S be a weakly B -abundant semigroup with (C) and (N). Then the relation δ on S defined by the rule

$$a \delta b \Leftrightarrow a = a^\dagger b a^* \text{ and } b = b^\dagger a b^*,$$

for some $a^\dagger, a^*, b^\dagger, b^* \in B$ with $a^\dagger \tilde{\mathcal{R}}_B a \tilde{\mathcal{L}}_B a^*$, and $b^\dagger \tilde{\mathcal{R}}_B b \tilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S .

Lemma Let S be a weakly B -abundant semigroup with (C) and (N). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1.

Definition A weakly B -abundant semigroup S is said to be a *weakly B -abundant semigroup with (C) and (N)* if S satisfies the congruence condition (C) and the set of distinguished idempotents is a normal band.

Lemma Let S be a weakly B -abundant semigroup with (C) and (N). Then the relation δ on S defined by the rule

$$a \delta b \Leftrightarrow a = a^\dagger b a^* \text{ and } b = b^\dagger a b^*,$$

for some $a^\dagger, a^*, b^\dagger, b^* \in B$ with $a^\dagger \tilde{\mathcal{R}}_B a \tilde{\mathcal{L}}_B a^*$, and $b^\dagger \tilde{\mathcal{R}}_B b \tilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S .

Lemma Let S be a weakly B -abundant semigroup with (C) and (N). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1.

Definition A weakly B -abundant semigroup S is said to be a *weakly B -abundant semigroup with (C) and (N)* if S satisfies the congruence condition (C) and the set of distinguished idempotents is a normal band.

Lemma Let S be a weakly B -abundant semigroup with (C) and (N). Then the relation δ on S defined by the rule

$$a \delta b \Leftrightarrow a = a^\dagger b a^* \text{ and } b = b^\dagger a b^*,$$

for some $a^\dagger, a^*, b^\dagger, b^* \in B$ with $a^\dagger \tilde{\mathcal{R}}_B a \tilde{\mathcal{L}}_B a^*$, and $b^\dagger \tilde{\mathcal{R}}_B b \tilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S .

Lemma Let S be a weakly B -abundant semigroup with (C) and (N). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1.

Theorem 2 A weakly B -abundant semigroup S with (C) and (N) is isomorphic to the spined product $S_B * S/\delta$ of S_B and S/δ with respect to S_B/δ_1 , δ_1^\natural and ψ , where $\psi : S/\delta \rightarrow S_B/\delta_1$ defined by $s\delta\psi = s\theta\delta_1$ for any $s \in S$ is an admissible homomorphism and $\psi|_{B/\delta} : B/\delta \rightarrow \bar{B}/\delta_1$ is an isomorphism.

Structure theorems for weakly B -abundant semigroups

Definition A weakly B -abundant semigroup S is said to a *weakly B -superabundant semigroup* if every $\tilde{\mathcal{H}}_B$ -class contains a distinguished idempotent.

Lemma Let S be a weakly B -abundant semigroup. For any $e, f \in B$, $e\tilde{\mathcal{D}}_B f \Leftrightarrow e\mathcal{D}^B f$ if and only if S is a weakly B -superabundant semigroup.

Lemma Let S be a weakly B -superabundant semigroup with (C). Then the relation δ on S defined by the rule

$$a\delta b \Leftrightarrow a = a^\dagger ba^* \text{ and } b = b^\dagger ab^*,$$

for some $a^\dagger, a^*, b^\dagger, b^* \in B$ with $a^\dagger \tilde{\mathcal{R}}_B a \tilde{\mathcal{L}}_B a^*$, and $b^\dagger \tilde{\mathcal{R}}_B b \tilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S .

Structure theorems for weakly B -abundant semigroups

Definition A weakly B -abundant semigroup S is said to a *weakly B -superabundant semigroup* if every $\tilde{\mathcal{H}}_B$ -class contains a distinguished idempotent.

Lemma Let S be a weakly B -abundant semigroup. For any $e, f \in B$, $e \tilde{\mathcal{D}}_B f \Leftrightarrow e \mathcal{D}^B f$ if and only if S is a weakly B -superabundant semigroup.

Lemma Let S be a weakly B -superabundant semigroup with (C). Then the relation δ on S defined by the rule

$$a \delta b \Leftrightarrow a = a^\dagger b a^* \text{ and } b = b^\dagger a b^*,$$

for some $a^\dagger, a^*, b^\dagger, b^* \in B$ with $a^\dagger \tilde{\mathcal{R}}_B a \tilde{\mathcal{L}}_B a^*$, and $b^\dagger \tilde{\mathcal{R}}_B b \tilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S .

Definition A weakly B -abundant semigroup S is said to a *weakly B -superabundant semigroup* if every $\tilde{\mathcal{H}}_B$ -class contains a distinguished idempotent.

Lemma Let S be a weakly B -abundant semigroup. For any $e, f \in B$, $e \tilde{\mathcal{D}}_B f \Leftrightarrow e \mathcal{D}^B f$ if and only if S is a weakly B -superabundant semigroup.

Lemma Let S be a weakly B -superabundant semigroup with (C). Then the relation δ on S defined by the rule

$$a \delta b \Leftrightarrow a = a^\dagger b a^* \text{ and } b = b^\dagger a b^*,$$

for some $a^\dagger, a^*, b^\dagger, b^* \in B$ with $a^\dagger \tilde{\mathcal{R}}_B a \tilde{\mathcal{L}}_B a^*$, and $b^\dagger \tilde{\mathcal{R}}_B b \tilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S .

Lemma Let S be a weakly B -superabundant semigroup with (C) . Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1.

Theorem 3 A weakly B -superabundant semigroup S with (C) is isomorphic to the spined product $S_B * S/\delta$ of S_B and S/δ with respect to S_B/δ_1 , δ_1^\natural and ψ , where $\psi : S/\delta \rightarrow S_B/\delta_1$ defined by $s\delta\psi = s\theta\delta_1$ for any $s \in S$ is an admissible homomorphism and $\psi|_{B/\delta} : B/\delta \rightarrow \bar{B}/\delta_1$ is an isomorphism.

Examples

Example 1 consider this normal band $B = \{e, f, 0\}$ with table

*	1	f	0
e	e	f	0
f	e	f	0
0	0	0	0

S_B does not have (WIC).

Examples

Example 2 Let $\langle a \rangle$ be a monogenic monoid generated by a and $X = \{x_i : i \in N\}$ be a right zero semigroup. Set $S = \langle a \rangle \cup X$. We define the operation $*$ as the following table:

*	1	a	a^n	x_i
1	1	a	a^n	x_i
a	a	a^2	a^{n+1}	x_i
a^m	a^m	a^{m+1}	a^{m+n}	x_i
x_j	x_j	x_{j+1}	x_{j+n}	x_i

Then we can check that S is a weakly B -superabundant semigroup with the distinguished band $\{1\} \cup X$. Moreover we can find S satisfies the congruence condition. But we yet find that for any $x_i \in \langle 1 \rangle$ there doesn't exist $x_j \in X$ such that $x_i a^n \neq a^n x_j$, where $n \geq 1$, so S fails to have (WIC).