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Groups

Normal subgroups of the symmetric group S,

There are three: {id,} <A, <S,.

Exceptions: General shape of N(S,):
> {ido} = Ao = So,

» {idi} = A1 =81,

> {id} = A2 ISy,

> {ida} <K <Ay <S8,
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Groups

Normal subgroups of the dihedral group D,

They correspond to the divisors of n (sort of); also depends on
parity of n.

N (D3p) N (Dios)
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Congruences
» Normal subgroups < quotient groups.
» Ideals of rings < quotient rings.

» Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a category S)

An equivalence o on (morphisms of) S such that:
» (x,y) €0 = (ax,ay),(xa,ya) € o when products defined,

> (x,y) €0 = d(x)=d(y) and r(x) =r(y).
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Congruences
» Normal subgroups < quotient groups.
» Ideals of rings < quotient rings.

» Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

» The set Cong(S) of all congruences forms a lattice.

Natural problem

Given S, find Cong(S). Today S will usually be a semigroup.
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Congruences on 7,

» Let 7, = full transformation semigroup on n = {1,...,n}

= {functions n — n}.

Theorem (Mal'cev, 1952)

4 5 6 7 8 9 10

n 1

2 3
Cong(7n) l l

» What are these congruences?
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|deals and Rees congruences

Ideal of a semigroup S

A nonempty subset / of S such that IS C S and S/ C S.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:
R =V,UAs.

All of I is collapsed to a point. The rest of S is preserved.
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Theorem (Mal'cev, 1952)

n 1 2 3 4 5 6 7 8 9 10
Cong(75)

» Rees congruences are white.

» What are the other congruences?
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For a € T, define rank(«) = |im(«)|.
For 1 < r < n define
» D, ={ac T, rank(a) =r},
» | ={aeT,: rank(a) <r}.
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Congruences on 7,

» For a € T, define rank(«) = |im(«)|.
» For 1 < r < n define
» D, ={aeT,:rank(a)=r},
» | ={aeT,: rank(a) <r}.
» ldeals: hchC---Cl,="7,
> Rees congruences: R, CR, C---C R, =V.
» Inside D, are lots of little groups = S,.
» Each N <GS, gives another congruence Ry:

» each S, collapses to S,/N,

» all of /,_; collapses to a point.
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Congruences on ideals

» An ideal / of S leads to a congruence R; on S.
» But / is also a semigroup!

» What are the congruences on /7

Natural problem

Given S, find Cong(/) for each ideal / of S.

Natural problem

Can we describe Cong(/,), where I, = I.(T,)?

> Let's ask GAP!
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Cong(h) Cong(lh) Cong(ls)  Cong(l)

» |1 is an n-element right-zero semigroup: Cong(/1) = &q,,.

» For r > 2, is Cong(/,) just Cong(7,) chopped off?
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Cong(h) = &4,

v

v

Cong(/;) = {R,’\', NS, g< n} U {V,,} for2<r<n.

v

Original proof strategy:
» Deal with /; and [, (r > 2) separately.
» Use knowledge about Cong(7,).

v

Later: general machinery that works for many other semigroups
and categories...

» transformations, linear transformations, diagrams, braids...
> Treat smallest ideal(s) of S, then "lift” from one to the next.

> No need to know Cong(S) in advance.
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Congruences on ideal extensions

» Suppose T is a semigroup with a stable, regular maximum

F-class Dr.

» Suppose the ideal S = T \ Dt has a stable, regular maximum
F -class Ds.

» Suppose (x,y)! = Vs forall x € Ds and y € S\ H,.

v

Suppose every congruence on S is liftable to T.
» One more technical assumption.

> Let G be a group J#-class contained in Dr.
Then

Cong(T) = {Ap, Uc : o € Cong(S)} U {RSTJV :N<Gu{Vr}.
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Congruences on ideal extensions

> Let S be a stable, regular partial semigroup with a chain of
F-classes Dy < Dy < ---.

» Theideals of S are [, = Dy U---UD, (and I, = S if the chain
is infinite).

> Let G4 be a group JZ-class in Dy.
» Suppose for some k every congruence on /I is liftable to S.

» A technical property on /i, and another on ly41, lxyo, ...
Then for any r > k (including r = w),

Cong(l;) = {A}, Uo : o € Cong(lk)}
U {R,I;’N k<g<r, NI Gq+1} U {V/,}.
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V) ——

RI,717G, —_—
F N(6,)

Ry,

—1

R’k+2 -

le+1sGk+2 —_—

= N(Gi+2)
R’k+1 -
R’k76k+l -
= N (Gr1)
Ry, ——
= Cong(/)
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More applications

> Partition categories P = P(¥)
» Planar, anti-planar, annular, anti-annular subcategories.

Q

Ps P (Pa) PH(Pa) o (Pa) o+ (Pa)
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» Brauer categories B

(€q3 x €q3) x 3

(Ba):

>I2
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» Brauer categories B

» (Anti-)planar/annular subcategories: Temperley-Lieb, Jones...



More applications

» (Anti-) Temperley-Lieb categories 7L and TL*

o

L

Io(TL) lo(TL) ls(TL) Is(TLF)




More applications

» (Anti-)Jones categories 7 and JE

Q

Io(7) lo(TF) ls(T) ls(T*)
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More applications

v

Some semigroups/categories with chains of ideals don't fit the
mould of the above theorems.

v

Examples include linear categories and partial braid categories.

v

These have nontrivial congruences contained in 7.

v

We have general results to deal with (some of) these.

v

Ir .
Congruences of form qu,Nq+1,Nq+2,...' with Ngi1 = Ngip = - -

v

Can still build Cong(/,11) from Cong(/,).

> It's just more complicated...
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More applications

» Linear category £ = L(F7)

(L)
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Current/future work

» Other categories:

> twisted diagram categories
> tangle/vine categories

» transformations/diagrams
with infinite underlying sets

» Some fit our general framework, some don’t
» One-sided ideals

» Variants/sandwich semigroups



Thank you :-)

Congruences lattices of ideals in categories and (partial) semigroups
» James East and Nik Ruskuc

» Coming soon to arXiv...



