

Cohomological dimension of inverse semigroups

Nick Gilbert, Heriot-Watt University, Edinburgh

An outline of homological algebra

- ▶ Projective modules are good.
- ▶ Free modules are better.
- ▶ R a ring, G a group: the group ring RG consists of all finite R -linear combinations $\sum_{g \in G} a_g g$ of the elements of G with obvious operations.

Resolutions

A *projective resolution* of a module M is a sequence of module maps

$$\cdots \rightarrow P_{k+1} \xrightarrow{\partial_{k+1}} P_k \xrightarrow{\partial_k} \cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \xrightarrow{\varepsilon} M \rightarrow 0$$

such that:

- ▶ each P_j is projective,
- ▶ for each $k \geq 0$, $\ker \partial_k = \text{im } \partial_{k+1}$,
- ▶ ε is surjective.

A resolution is an attempt to approximate M using projectives: it might involve non-zero terms for ever, or eventually become zero - we then say the resolution is of finite length.

Examples of resolutions

- ▶ M projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.

Examples of resolutions

- ▶ M projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.
- ▶ For \mathbb{Z} -modules, aka abelian groups, every module has a free resolution of length ≤ 1 : $0 \rightarrow \ker \varepsilon \rightarrow F \rightarrow M \rightarrow 0$.

Examples of resolutions

- ▶ M projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.
- ▶ For \mathbb{Z} -modules, aka abelian groups, every module has a free resolution of length ≤ 1 : $0 \rightarrow \ker \varepsilon \rightarrow F \rightarrow M \rightarrow 0$.
- ▶ As a trivial module over $R = \mathbb{Z}[t]/(t^2 - 1)$, the integral group ring of C_2 , \mathbb{Z} has an infinite free resolution

$$\dots \rightarrow R \xrightarrow{t-1} R \xrightarrow{t+1} R \xrightarrow{t-1} R \rightarrow \mathbb{Z} \rightarrow 0$$

and none of finite length.

Examples of resolutions

- ▶ M projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.
- ▶ For \mathbb{Z} -modules, aka abelian groups, every module has a free resolution of length ≤ 1 : $0 \rightarrow \ker \varepsilon \rightarrow F \rightarrow M \rightarrow 0$.
- ▶ As a trivial module over $R = \mathbb{Z}[t]/(t^2 - 1)$, the integral group ring of C_2 , \mathbb{Z} has an infinite free resolution

$$\dots \rightarrow R \xrightarrow{t-1} R \xrightarrow{t+1} R \xrightarrow{t-1} R \rightarrow \mathbb{Z} \rightarrow 0$$

and none of finite length.

- ▶ If a group G acts freely on a contractible cell complex X then the cellular chain complex of X gives a free resolution of \mathbb{Z} as a trivial $\mathbb{Z}G$ -module.

Modules for categories

For a small category \mathcal{C} a \mathcal{C} –module is

- ▶ a functor from \mathcal{C} to abelian groups,

Modules for categories

For a small category \mathcal{C} a \mathcal{C} –module is

- ▶ a functor from \mathcal{C} to abelian groups,
- ▶ equivalently, a collection of abelian groups indexed by the objects of \mathcal{C} , and for each arrow

$$x \xrightarrow{\alpha} y$$

of \mathcal{C} a homomorphism $A_x \rightarrow A_y$ satisfying some obvious rules.

Inverse semigroups

An *inverse semigroup* is

- ▶ a regular semigroup in which idempotents commute,

Inverse semigroups

An *inverse semigroup* is

- ▶ a regular semigroup in which idempotents commute,
- ▶ a semigroup S in which, for each $s \in S$, there exists a **unique** $s^{-1} \in S$ such that $ss^{-1}s = s$ and $s^{-1}ss^{-1} = s^{-1}$.

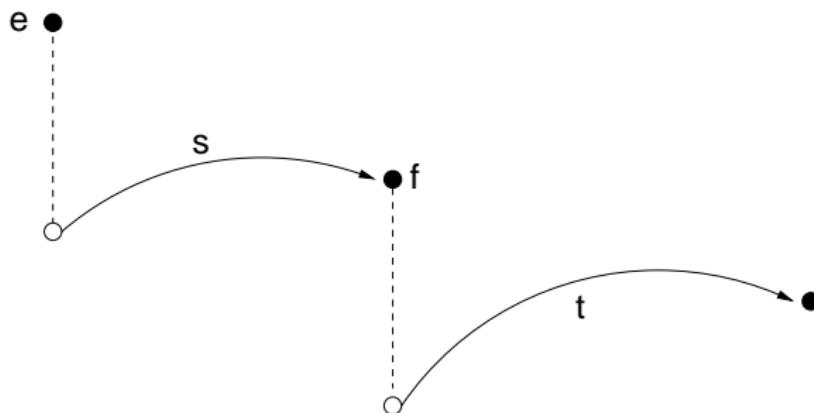
The *natural partial order* in S is given by

$$a \leqslant b \iff \text{there exists } e \in E(S) \text{ such that } a = eb.$$

Modules for inverse semigroups (I)

Loganathan's category $\mathcal{L}(S)$:

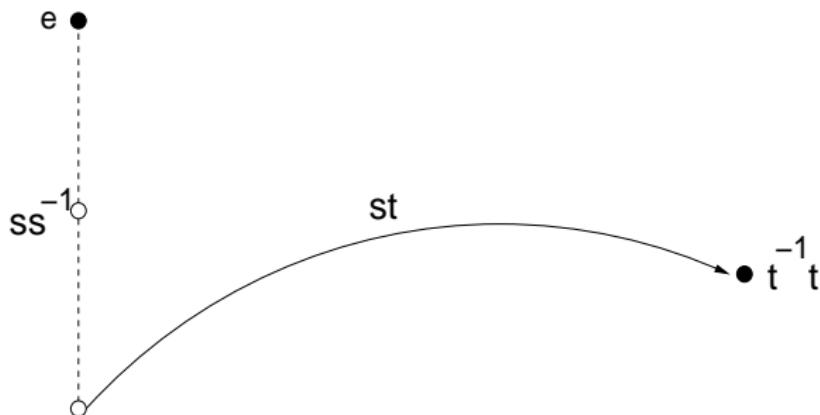
- ▶ objects are idempotents in S ,
- ▶ arrows are pairs (e, s) with $e \in E(S), s \in S$ such that $e \geqslant ss^{-1}$,
- ▶ (e, s) starts at e and ends at $s^{-1}s$,
- ▶ $(e, s)(f, t) = (e, st)$ when $s^{-1}s = f$.



Modules for inverse semigroups (I 1/2)

Loganathan's category $\mathcal{L}(S)$:

- ▶ objects are idempotents in S ,
- ▶ arrows are pairs (e, s) with $e \in E(S), s \in S$ such that $e \geq ss^{-1}$,
- ▶ (e, s) starts at e and ends at $s^{-1}s$,
- ▶ $(e, s)(f, t) = (e, st)$ when $s^{-1}s = f$.



More about $\mathfrak{L}(S)$

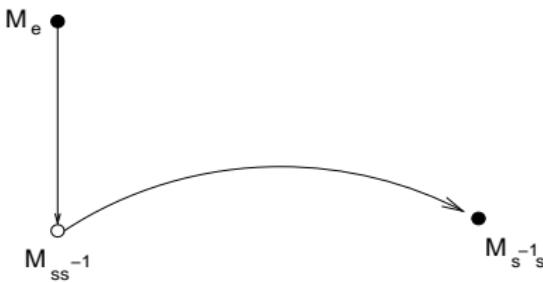
- ▶ $\mathfrak{L}(S)$ is left cancellative,
- ▶ arrow (e, s) uniquely decomposable as $(e, ss^{-1})(ss^{-1}, s)$
- ▶ $\mathfrak{L}(S)$ is a Zappa-Szép product of categories

$$\mathfrak{L}(S) = E(S) \bowtie S$$

Modules for inverse semigroups (II)

A module for S is now defined as a module for $\mathfrak{L}(S)$: Loganathan's 1981 recasting of ideas of Lausch (1975). So an $\mathfrak{L}(S)$ –module \mathcal{M} consists of:

- ▶ an abelian group M_e for each $e \in E(S)$,
- ▶ homomorphisms $M_e \rightarrow M_f$ whenever $e \geq f$,
- ▶ isomorphisms $M_{ss^{-1}} \rightarrow M_{s^{-1}s}$ (isoms since action by s on $M_{ss^{-1}}$ has inverse given by action by s^{-1}).



Cohomological dimension

The *projective dimension* of a module M is the smallest n such that M has a projective resolution of length n (so $P_n \neq 0$ but $P_k = 0$ for $k > n$).

The (integral) cohomological dimension $\text{cd } G$ of a group G is the projective dimension of \mathbb{Z} as a trivial G -module.

The cohomological dimension of an inverse semigroup S is the projective dimension of the module \mathbb{Z} in which $\mathbb{Z}_e = \mathbb{Z}$ for all $e \in E(S)$ and all maps are identities.

The Gruenberg resolution

Resolution by relations, as Gruenberg's paper (1960) had it:

- ▶ G a group, F a free group mapping on to G ,
 $N = \ker(F \xrightarrow{\theta} G)$,
- ▶ induced $\theta : \mathbb{Z}F \rightarrow \mathbb{Z}G$ with kernel \mathfrak{r} ,
- ▶ *augmentation ideal* \mathfrak{f} of F is $\ker(\mathbb{Z}F \xrightarrow{\varepsilon} \mathbb{Z})$ where $\varepsilon : w \mapsto 1$ for all $w \in F$.

Theorem (Gruenberg)

The complex of $\mathbb{Z}G$ -modules

$$\dots \rightarrow \mathfrak{r}^2/\mathfrak{r}^3 \rightarrow \mathfrak{f}\mathfrak{r}/\mathfrak{f}\mathfrak{r}^2 \rightarrow \mathfrak{r}/\mathfrak{r}^2 \rightarrow \mathfrak{f}/\mathfrak{f}\mathfrak{r} \rightarrow \mathbb{Z}G \rightarrow \mathbb{Z} \rightarrow 0$$

is a G -free resolution of \mathbb{Z} , and this construction gives a functor from the category of free presentations of G to the category of G -free resolutions of \mathbb{Z} .

“Yes... wonderful things.”

The Gruenberg resolution gives us:

- ▶ a free resolution from any free presentation of G ,
- ▶ a module theory approach to the *relation module*:
 $\ker(f/\mathfrak{f}r \rightarrow \mathbb{Z}G) \cong N^{ab}$ as G -modules. We don't need abelianisation.
- ▶ generalised Hopf formulae for the homology of G :

$$H_{2q}(G) = \frac{\mathfrak{r}^q \cap \mathfrak{f}r^{q-1}\mathfrak{f}}{\mathfrak{f}\mathfrak{r}^q + \mathfrak{r}^q\mathfrak{f}} \quad H_{2q+1}(G) = \frac{\mathfrak{f}\mathfrak{r}^q \cap \mathfrak{r}^q\mathfrak{f}}{\mathfrak{r}^{q+1} + \mathfrak{f}\mathfrak{r}^q\mathfrak{f}}.$$

- ▶ Gives Webb's approach to the relation module etc for categories (2011).

Let's do all this for inverse semigroups

Loganathan defines $\mathbb{Z}S$ as the $\mathcal{L}(S)$ -module with $(\mathbb{Z}S)_e$ free abelian on the \mathcal{L} -class of e in S :

$$(\mathbb{Z}S)_e = \mathbf{free abelian group} \{s \in S : s^{-1}s = e\}.$$

$\mathbb{Z}S$ need not be free as a $\mathcal{L}(S)$ -module, but it is projective. So we want to construct a version of the Gruenberg resolution:

$$\dots \rightarrow \mathfrak{r}^2/\mathfrak{r}^3 \rightarrow \mathfrak{f}\mathfrak{r}/\mathfrak{f}\mathfrak{r}^2 \rightarrow \mathfrak{r}/\mathfrak{r}^2 \rightarrow \mathfrak{f}/\mathfrak{f}\mathfrak{r} \rightarrow \mathbb{Z}S \rightarrow \underline{\mathbb{Z}} \rightarrow 0$$

using projective $\mathcal{L}(S)$ -modules.

The limits to ambition

- ▶ Want:

$$\dots \rightarrow \mathfrak{r}^2/\mathfrak{r}^3 \rightarrow \mathfrak{f}\mathfrak{r}/\mathfrak{f}\mathfrak{r}^2 \rightarrow \mathfrak{r}/\mathfrak{r}^2 \rightarrow \mathfrak{f}/\mathfrak{f}\mathfrak{r} \rightarrow \mathbb{Z}S \rightarrow \underline{\mathbb{Z}} \rightarrow 0$$

The limits to ambition

- ▶ Want:

$$\dots \rightarrow \mathfrak{r}^2/\mathfrak{r}^3 \rightarrow \mathfrak{f}\mathfrak{r}/\mathfrak{f}\mathfrak{r}^2 \rightarrow \mathfrak{r}/\mathfrak{r}^2 \rightarrow \mathfrak{f}/\mathfrak{f}\mathfrak{r} \rightarrow \mathbb{Z}S \rightarrow \underline{\mathbb{Z}} \rightarrow 0$$

- ▶ Get:

$$\mathcal{F} \rightarrow D \rightarrow \mathbb{Z}S \rightarrow \underline{\mathbb{Z}} \rightarrow 0$$

Here D is an inverse semigroup version of Crowell's *derivation module* and/or Gruenberg's $\mathfrak{f}/\mathfrak{f}\mathfrak{r}$ and \mathcal{F} is an $\mathcal{L}(S)$ –module 'free on the relations'.

The derivation module

- ▶ $\theta : T \rightarrow S$ a hom of inverse semigroups, $\mathcal{A} = \bigcup_{e \in E(S)} A_e$ an $\mathfrak{L}(S)$ -module.
- ▶ $\eta : T \rightarrow \mathcal{A}$ is a θ -derivation if,
 - ▶ $a\eta \in A_{(a^{-1}a)\theta}$,
 - ▶ whenever $a, b \in T$ with $a^{-1}a \geqslant bb^{-1}$,

$$(ab)\eta = a\eta \triangleleft ((a^{-1}a)\theta, b\theta) + b\eta.$$

- ▶ the derivation module D_θ has $(D_\theta)_e$
 - ▶ generated by all $(a, s) \in T \times S$ with $(a^{-1}a)\theta \geqslant ss^{-1}$ and $s^{-1}s = e$
 - ▶ subject to relations

$$(ab, s) - (b, s) = (a, (b\theta)s)$$

for all $a, b \in T$ with $a^{-1}a \geqslant bb^{-1}$.

- ▶ image of (a, s) in D_θ is written $\langle a, s \rangle$.

What is it good for? (I)

Derivation module D_θ converts θ –derivations to homomorphisms:

Theorem

There exists a canonical θ –derivation

$$\delta : T \rightarrow D_\theta, \quad \delta : a \mapsto \langle t, (t^{-1}t)\theta \rangle$$

such that, given any θ –derivation $\eta : T \rightarrow \mathcal{A}$ to an $\mathfrak{L}(S)$ –module \mathcal{A} , there is a unique $\mathfrak{L}(S)$ –map $\xi : D_\theta \rightarrow \mathcal{A}$ such that $\eta = \delta\xi$.

$$\begin{array}{ccc} T & \xrightarrow{\delta} & D_\theta \\ \eta \downarrow & \swarrow \xi & \\ \mathcal{A} & & \end{array}$$

What is it good for? (II)

Theorem

If S is an inverse monoid and F a free inverse monoid with $\theta : F \rightarrow S$ surjective then

- ▶ D_θ is a projective $\mathfrak{L}(S)$ -module,
- ▶ $\partial_1 : D_\theta \rightarrow \mathbb{Z}S, \langle a, s \rangle \mapsto (a\theta)s - s$ maps D_θ on to the augmentation module of S .

The kernel of ∂_1 , following Gruenberg, we define to be the *relation module* \mathcal{M}_θ of θ .

The relation module

Let $\langle X : \ell_1 = r_1, \ell_2 = r_2, \dots \rangle$ be a presentation of the inverse monoid M , with F the free monoid generated by X .

Theorem

The relation module M_θ is generated, as an $\mathfrak{L}(S)$ -module, by all elements of the form $\langle \ell_i, e \rangle - \langle r_i, e \rangle$ where $e = (\ell_i^{-1} r_i) \theta$.

Cohomological dimension 0

A group G has cohom dim 0 if and only if it is trivial. [Exercise: \mathbb{Z} is a projective G -module ...]

Theorem

An inverse monoid has cohomological dimension 0 if and only if it is a semilattice (so every element is an idempotent).

Proof.

- ▶ (Leech 1975) Use Laudal's 1972 characterization of small categories of cd 0 and apply to $\mathcal{L}(S)$.
- ▶ or: use the fact that \mathbb{Z} is a projective $\mathcal{L}(S)$ -module and generalise the argument for groups.

Arboreal inverse monoids

An *arboreal* inverse monoid M is one given by a presentation $\langle X : e_i = f_i \rangle$ where e_i, f_i are idempotents in F – that is, words whose freely reduced form is equal to 1.

Theorem (Margolis-Meakin 1993)

- ▶ X –generated arboreal inverse monoids are the E –unitary quotients of F with maximum group image free on X ,
- ▶ M is arboreal if and only if each of its Schützenberger graphs is a tree,
- ▶ finitely presented arboreal inverse monoids have decidable word problem.

Cohomological dimension 1

Theorem

An arboreal inverse monoid has cohomological dimension 1.

Proof.

For presentations of the type that define arboreal inverse monoids, the relation module $\mathcal{M} = 0$ since

$$\begin{aligned}\langle e_i, (e_i)\theta \rangle &= \langle e_i e_i, (e_i)\theta \rangle \\ &= \langle e_i, (e_i)\theta (e_i)\theta \rangle + \langle e_i, (e_i)\theta \rangle \\ &= \langle e_i, (e_i)\theta \rangle + \langle e_i, (e_i)\theta \rangle.\end{aligned}$$

So we have a projective resolution

$$0 \rightarrow D \rightarrow \mathbb{Z}S \rightarrow \underline{\mathbb{Z}} \rightarrow 0.$$

□

Go on, go on ,go on

Conjecture: [Steinberg] An inverse monoid M acts freely on a presheaf of trees over $E(M)$ if and only if it is E -unitary, has free maximum group image, and $\text{cd} = 1$.

Arboreal inverse monoids act freely on their Schützenberger trees.

Stallings-Swan Theorem (1969). A group G has $\text{cd } G \leq 1$ if and only if it is free.

What is the right notion of 'free'? Surely, guided by results of Margolis-Meakin-Yamamura 1999:

'free' should be: M is arboreal.