

Monoids, S -acts and coherency

York February/March 2017

Victoria Gould
University of York

Semigroups and monoids

What are they?

A **semigroup** S is a non-empty set together with an associative binary operation.

If the binary operation (looks like) $+$ we write ' $a + b$ ', so associativity says

$$(a + b) + c = a + (b + c)$$

A semigroup

The first arithmetic most humans meet involves the natural numbers
 $\mathbb{N} = \{1, 2, 3, \dots\}$ with operation $+$

Semigroups and monoids

What are they?

For a general semigroup S we write the binary operation as juxtaposition ' ab ' so associativity says

$$a(bc) = (ab)c \text{ for all } a, b, c \in S.$$

If $\exists 1 \in S$ with $1a = a = a1$ for all $a \in S$, then S is a **monoid**.

A monoid

\mathbb{N} with operation \times

Semigroups and monoids

Examples

- Groups
- Multiplicative semigroups of rings, e.g. $M_n(D)$ where D is a division ring.
- Let X be a set. Then

$$\mathcal{T}_X := \{\alpha \mid \alpha : X \rightarrow X\}$$

$$\mathcal{S}_X := \{\alpha \mid \alpha : X \rightarrow X, \alpha \text{ bijective}\}$$

$$\mathcal{PT}_X := \{\alpha \mid \alpha : Y \rightarrow Z \text{ where } Y, X \subseteq X\}$$

$$\mathcal{I}_X := \{\alpha \in \mathcal{PT}_X \mid \alpha \text{ is one-one}\}$$

are monoids under \circ , the **full transformation monoid**, the **symmetric group** the **partial transformation monoid** and the **symmetric inverse monoid** on X .

If $X = \underline{n} = \{1, 2, \dots, n\}$ then we write \mathcal{T}_n for $\mathcal{T}_{\underline{n}}$, etc.

Semigroup Theory

What kind of questions can we ask?

(Algebraic) semigroup theory is a rich and vibrant subject:

- Structure theory for semigroups
- Combinatorial and geometric questions
- Free algebras, varieties and lattices
- S -acts over a monoid S
- The Rhodes/Steinberg school of finite semigroup theory
- Special classes of semigroups e.g. inverse
- Connections with categories
- Semigroup algebras

*Throughout many of these, it is the behaviour of **idempotents** that is significant.*

Semigroup Theory

What kind of questions can we ask?

(Algebraic) semigroup theory is a rich and vibrant subject:

- Structure theory for semigroups
- Combinatorial and geometric questions
- Free algebras, varieties and lattices
- *S-acts over a monoid S*
- The Rhodes/Steinberg school of finite semigroup theory
- Special classes of semigroups e.g. inverse
- Connections with categories
- Semigroup algebras

Throughout many of these, it is the behaviour of idempotents that is significant.

Semigroup Theory

Applications/connections with other areas of mathematics

- Automata, languages and theoretical computer science
- Finite group theory
- C^* -algebras and mathematical physics.
- Semigroup algebras, analysis and combinatorics
- Representation theory
- Model theory
- Tropical algebra

Semigroup Theory

Applications/connections with other areas of mathematics

- Automata, languages and theoretical computer science
- Finite group theory
- C^* -algebras and mathematical physics.
- Semigroup algebras
- Representation theory
- **Model theory**
- Tropical algebra

S -acts

Representation of monoid S by mappings of sets

Throughout, S is a **monoid**.

A **(right) S -act** is a set A together with a map

$$A \times S \rightarrow A, (a, s) \mapsto as$$

such that for all $a \in A, s, t \in S$

$$a1 = a \text{ and } (as)t = a(st).$$

For any $s \in S$, we have a unary operation on A given by $a \mapsto as$.

An S -act A is just a morphism from S to \mathcal{T}_A .

- Of course, S is an S -act via its own operation
- An **S -morphism** from A to B is a map $\alpha : A \rightarrow B$ with $(as)\alpha = (a\alpha)s$ for all $a \in A, s \in S$.
- S -acts and S -morphisms form a **category** - products are products, coproducts are disjoint unions
- We have usual definitions of **free**, **projective**, **injective**, etc. including variations on **flat**.
- If $a \in A$ where A is an S -act, then

$$aS = \{as : s \in S\}$$

- An S -act A is **generated** by $X \subseteq A$ if

$$A = \bigcup_{x \in X} xS.$$

- An S -act A is **finitely generated** if there exists $a_1, \dots, a_n \in A$ with

$$A = \{a_i s : s \in S\}.$$

Free S -acts

Let X be a set. By general nonsense, the free S -act $\mathcal{F}_S(X)$ on X exists.

Construction of $\mathcal{F}_S(X)$. Let

$$\mathcal{F}_S(X) = X \times S$$

and define

$$(x, s)t = (x, st).$$

Then it is easy to check that $\mathcal{F}_S(X)$ is an S -act. With $x \mapsto (x, 1)$, we have $\mathcal{F}_S(X)$ is free on X .

Free S -acts

We abbreviate (x, s) by xs and identify x with $x1$.

So,

$$F_S(X) = \bigcup_{x \in X} xS.$$

Thus $F_S(X)$ is generated by X and is a **disjoint union of copies of S** .

S is the free S -act on one generator.

An S -act A

Standard definitions/Elementary observations

Congruences -

- A **congruence** ρ on A is an equivalence relation such that

$$a \rho b \Rightarrow as \rho bs$$

for all $a, b \in A$ and $s \in S$.

- If ρ is a congruence on A ,

$$A/\rho = \{[a] : a \in A\}$$

is an S -act under $[a]s = [as]$.

- ρ is **finitely generated** if ρ is the smallest congruence containing a finite set $H \subseteq A \times A$.
- A is **finitely presented** if

$$A \cong F_S(n)/\rho$$

for some finitely generated free S -act $F_S(n)$ and finitely generated congruence ρ .

The model theory of S -acts

First order languages and L_S

A (first order) language L has alphabet:

variables, connectives (e.g. $\neg, \vee, \wedge, \rightarrow$ etc.), quantifiers (\forall, \exists), $=$,
brackets, commas
and some/all of symbols for constants, functions and relations.

There are rules for forming well formed formulae (wff); a **sentence** is a wff with no free variables (i.e. all variables are governed by quantifiers).

The language L_S

has:

no constant or relational symbols (other than $=$)

for each $s \in S$, a unary function symbol ρ_s .

A point of convenience Let us agree to abbreviate $x\rho_s$ in wffs of L_S by xs .

L_S -structures and S -acts

Examples

$\neg(xs = xt)$ is a wff but not a sentence

$(\forall x)(\neg(xs = xt))$ is a sentence, $(\exists \vee xsx$ is not a wff.

An **L -structure** is a set D equipped with enough distinguished elements (constants), functions and relations to ‘interpret’ the abstract symbols of L .

An L_S -structure is simply a set with a unary operation for each $s \in S$.

Clearly an S -act A is an L_S -structure where we interpret ρ_s by the map $x \mapsto xs$.

Model theory = algebra + logic

A **theory** is a set of sentences in a first order language.

Model theory provides a range of techniques to study algebraic and relational structures etc. via properties of their associated **languages** and **theories**.

Model theory of R -modules is a well developed subject area (e.g. **Eklof and Sabbagh, Bouscaren, Prest**)

Model theory of S -acts - much less is known - authors include **Ivanov, Mustafin, Stepanova** .

Stability is an area within model theory, introduced by **Morley 62**. Much of the development of the subject is due to **Shelah**; the definitive reference is **Shelah 90** though (quote from Wiki) *it is notoriously hard even for experts to read*.

Model theory lite: axiomatisability

Axiomatisability

A class \mathcal{A} of L_S -structures is **axiomatisable** if there is a theory Σ such that for any L_S -structure A , we have $A \in \mathcal{A}$ if and only if every sentence of Σ is true in A , i.e. A is a **model** of Σ .

This is saying is that \mathcal{A} can be captured exactly within the language L_S .

Let Σ_S be the theory

$$\Sigma_S = \{(\forall x)((xs)t = x(st)) : s, t \in S\} \cup \{(\forall x)(x1 = x)\}.$$

Then Σ_S axiomatises the class of S -acts (within all L_S -structures).

Monoids

Finitary conditions

Many of the 'natural' classes of S -acts - such as free, projective etc. - are axiomatisable if and only if S **satisfies a finitary condition**.

Finitary condition

A condition satisfied by a finite monoid, e.g., every element has an idempotent power

Finitary conditions were introduced by **Noether** and **Artin** in the early 20th Century to study rings; they changed the course of algebra entirely.

Monoids

Finitary conditions

Coherency

Coherency

This is a finitary condition of importance to us today

Definition

S is (right) coherent if every finitely generated S -subact of every finitely presented S -act is finitely presented.

Coherency is a very weak finitary condition.

Algebraically and existentially closed S -acts

Let A be an S -act. An **equation** over A has the form

$$xs = xt, \quad xs = yt \text{ or } xs = a$$

where x, y are variables, $s, t \in S$ and $a \in A$.

An **inequation** is of the form $xs \neq xt$, etc.

Consistency

A set of equations and inequations is **consistent** if it has a solution in some S -act $B \supseteq A$.

Algebraically/existentially closed

A is **algebraically closed** or **absolutely pure** if every finite consistent set of equations over A has a solution in A .

A is **existentially closed** if every finite consistent set of equations and inequations over A has a solution in A .

Axiomatisability

Existentially closed S -acts

Model companions

Let \mathcal{E} denote the class of existentially closed S -acts.

When is \mathcal{E} axiomatisable?

Let T, T^* be theories in a first order language L . Then T^* is a **model companion** of T if every model of T embeds into a model of T^* and vice versa, and embeddings between models of T^* are elementary embeddings.

Wheeler 76

Σ_S has a model companion Σ_S^* precisely when \mathcal{E} (the class of existentially closed S -acts) is axiomatisable and in this case, Σ_S^* axiomatises \mathcal{E} .

So, the question of when does Σ_S^* exist? is our question, when is \mathcal{E} axiomatisable?

When is \mathcal{E} axiomatisable?

Let A be an S -act and let $z \in A$. We define

$$\mathbf{r}(z) = \{(u, v) \in S \times S : zu = zv\}.$$

Notice that $\mathbf{r}(z)$ is a right congruence on S .

Theorem: Wheeler 76, G 87, 92, Ivanov 92

The f.a.e. for S :

- ① Σ_S^* exists;
- ② S is (right) coherent;
- ③ every finitely generated S -subact of every S/ρ , where ρ is finitely generated, is finitely presented;
- ④ for every finitely generated right congruence ρ on S and every $a, b \in S$ we have $\mathbf{r}([a])$ is finitely generated, and $[a]S \cap [b]S$ is finitely generated.

Which monoids are right coherent? 20th century

S is **weakly right noetherian** if every right ideal is finitely generated.

S is **right noetherian** if every right congruence is finitely generated.

Theorem Normak 77 If S is right noetherian, it is right coherent.

Example Fountain 92 There exists a weakly right noetherian S which is not right coherent.

Old(ish) results: **G**

The following monoids are right coherent:

- ① the free commutative monoid on X ;
- ② Clifford monoids;
- ③ regular monoids for which every right ideal is principal.

Which monoids are right coherent? 21st century

We have seen free commutative monoids are coherent - it is known that free rings are coherent (**K.G. Choo, K.Y. Lam and E. Luft, 72**). I could *not* show free monoids X^* are coherent.

Notice

$$X^* = \{x_1 x_2 \dots x_n : n \geq 0, x_i \in X\}$$

with

$$(x_1 x_2 \dots x_n)(y_1 y_2 \dots y_m) = x_1 x_2 \dots x_n y_1 y_2 \dots y_m.$$

Theorem: G. Hartmann, Ruškuc (2015)

Any free monoid X^* is coherent

Which monoids are right coherent?

21st century

For the semigroupers here

We can also show, together with others including Yang that the following monoids are right coherent:

- ① regular monoids for which certain 'annihilator right ideals' are finitely generated, e.g. $(\mathbb{Z} \times \mathbb{Z})^1$ with 'bicyclic' multiplication;
- ② combinatorial Brandt semigroups with 1 adjoined;
- ③ primitive inverse semigroups, with 1 adjoined.

BUT free inverse monoids are NOT right coherent.

On the other hand,

Theorem: G, Hartmann 2016

Free left ample monoids are right coherent.

Algebraic closure and injectivity

Strongly related

An S -act T is **injective** if for any S -acts A, B and S -morphisms

$$\phi : A \rightarrow B, \psi : A \rightarrow T$$

with ϕ one-one, there exists an S -morphism $\theta : B \rightarrow T$ such that

$$\phi\theta = \psi.$$

Theorem: G 19 ■ ■

An S -act T is injective if and only if every consistent system of equations over T has a solution in T .

Restrictions on the A, B give restricted notions of injectivity and these are related to solutions of special consistent systems of equations.

Algebraic closure and injectivity

Strongly related

Recall and S -act C is **absolutely pure/algebraically closed** if every finite consistent system of equations over C , has a solution in C .

Proposition: G

An S -act C is algebraically closed if and only if for any S -acts A, B and S -morphisms

$$\phi : A \rightarrow B, \psi : A \rightarrow C$$

with ϕ one-one, B finitely presented and A finitely generated, there exists an S -morphism $\theta : B \rightarrow C$ such that

$$\phi\theta = \psi.$$

Absolute purity vs almost purity

Algebraically closed a.k.a. absolutely pure

A is **algebraically closed** or **absolutely pure** if every finite consistent set of equations over A has a solution in A .

1-algebraically closed a.k.a. almost pure

A is **1-algebraically closed** or **almost pure** if every finite consistent set of equations over A **in one variable** has a solution in A .

The Question:

Definition A monoid S is **completely right pure** if all S -acts are absolutely pure.

Theorem: G

Suppose that all S -acts are almost pure. Then S is completely right pure.

Question

Does there exist a monoid S and an S -act A such that A is almost pure but not absolutely pure?????

Completely (right) injective/pure monoids

Definition A monoid S is **completely right injective** if all S -acts are injective.

Theorem: (Fountain, 1974)

A monoid S is completely right injective if and only if S has a left zero and S satisfies

(*) for any right ideal I of S and right congruence ρ on S , there is an $s \in I$ such that for all $u, v \in S, w \in I$, $sw \rho w$ and if $u \rho v$ then $su \rho sv$.

Theorem (Gould, 1991)

A monoid S is completely right pure if and only if S has a local zeros and S satisfies

(**) for any finitely generated right ideal I of S and finitely generated right congruence ρ on S , there is an $s \in I$ such that for all $u, v \in S, w \in I$, $sw \rho w$ and if $u \rho v$ then $su \rho sv$.

Absolute purity vs almost purity

Theorem: G, Yang Dandan, Salma Shaheen (2016)

Let S be a finite monoid and let A be an almost pure S -act. Then A is absolutely pure

Theorem: G, Yang Dandan(2016)

Let S be a right coherent monoid and let A be an almost pure S -act. Then A is absolutely pure

Questions

- 1 There is a way of writing down a complicated condition on chains of finitely presented acts that are equivalent to S having the property that every 1-algebraically closed S -act is algebraically closed. Can we use this to show there exist an almost pure S -act that is not absolutely pure????
- 2 Connections of right coherency to products of (weakly, strongly) flat *left* S -acts? These hold in the ring case but are only partially known for monoids.
- 3 Other finitary conditions arise in stability theory of S -acts, including that of being **ranked** on the lattice of right congruences of S . A number of open questions remain concerning their correlation and their simplification.
 - For an arbitrary S , does being ranked imply being weakly right noetherian?
 - Can we describe ranked groups?

Monoids, model theory, S -acts and coherency
Any questions?

Thank you very much for your time.

Any questions?