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Abstract

This paper evaluates algorithms for classification and out-
lier detection accuracies in temporal data. We focus on al-
gorithms that train and classify rapidly and can be used for
systems that need to incorporate new data regularly. Hence,
we compare the accuracy of six fast algorithms using a range
of well-known time-series datasets. The analyses demonstrate
that the choice of algorithm is task and data specific but that
we can derive heuristics for choosing. Gradient Boosting Ma-
chines are generally best for classification but there is no sin-
gle winner for outlier detection though Gradient Boosting
Machines (again) and Random Forest are better. Hence, we
recommend running evaluations of a number of algorithms
using our heuristics.

1 Introduction

We analyze a range of algorithms used for both classifi-
cation and outlier detection (Hodge and Austin 2004) on
multi-variate time-series data (Keogh and Kasetty 2003).
Our research question is to identify an efficient method
for on-line classification and outlier detection in mul-
tivariate sensor data across IoT and transport domains
(Hodge et al. 2015). We focus on algorithms that train and
classify in less than 5 minutes for all datasets here and,
hence, can be used in an on-line system where new data
need to be assimilated constantly. Our ongoing research
will have labeled training data allowing supervised training.
Accuracy is our key metric as we want to ensure that all
anomalies are found and that classification accuracy is as
high as possible. Precision is less important for our current
work as false positives can be post-processed.

Authors have evaluated classification (Bagnall et al. 2017;
Brown and Mues 2012; Demšar 2006) and outlier detec-
tion (Swersky et al. 2016) algorithms across a range of
datasets. Bagnall et al. (Bagnall et al. 2017) provide a
comprehensive survey of time-series classification algo-
rithms. However, none of these papers provides a general,
unbiased evaluation of multi-variate time-series data for
both classification and supervised outlier detection. Keogh
and Kasetty (Keogh and Kasetty 2003) identified that such
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evaluations are vital. Additionally, as noted by Bagnall et al.
(Bagnall et al. 2017), in previous classification evaluations
“several different programming languages have been used,
experiments involved a single train/test split and some used
normalized data whilst others did not” also “the majority
of the datasets were synthetic and created by the proposing
authors, for the purpose of showcasing their algorithm”.

2 Algorithms

To ensure consistency of evaluation, we take as many al-
gorithms as possible from a single framework, WEKA
(Frank, Hall, and Witten 2016). We evaluate five popular
WEKA algorithms: (Bayesian Network (Bayes), C4.5, k-
NN, Naive Bayes (Naive) and Random Forest (RF)) that
are used widely. We also include Microsoft Light Gradient
Boosting Machine (GBM) (Microsoft Research 2017) as
GBM algorithms have performed consistently well in recent
Kaggle competitions for classifying and detecting anomalies
in time-series data, for example (Taieb and Hyndman 2014).
We also evaluated WEKA logistic regression (LR) but re-
sults were poor and are not included.

3 Datasets

There are many data sets available for classification evalua-
tions, see (Bagnall et al. 2017) for a list. However, there are
very few time-series datasets amenable to both outlier detec-
tion and classification evaluation. The data set should have
multiple data attributes, amenable to generating time-series
windows, contain at least 2000 examples, and have a clear
outlier class. We scanned as many repositories as we could
find and were able to extract 10 time-series datasets that
met our criteria for both classification and outlier detection.
The 10 datasets are: Electric Devices (Elec) and Ford
Classification Challenge using clean and noisy data (Ford1
and Ford2) respectively from the UCR data repository
(Chen et al. 2015) and EEG Eye State (EEG); Human Ac-
tivity Recognition Using Smartphones (HAR); five people
performing different activities (JSI); Ozone Level Detection
over 1 hour (O1hr

3 ) and 8 hours (O8hr
3 ); Occupancy De-

tection (Occ) and sensor readings of the Pioneer-1 mobile
robot (Robot) from UCI machine learning repository
(Lichman 2013). The details of the 10 datasets are given in
table 1: the size of the training set, the size of the test set,
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Table 1: Details of the 10 datasets: training size, test size, number of attributes and outlier class. An asterisk indicates that we
buffered the data into time-series length 20.

Dataset JSI EEG Ford1 Ford2 O1hr
3

O8hr
3

Robot Har Occ Elec

Train 23815 9874 3271 3306 1674 1672 4033 4852 8124 8926
Test 12268 5087 1320 810 862 862 2077 2500 9733 7711
Attr 3

∗
14

∗ 500 500 72 72 35
∗ 561 5

∗ 96
Outlier Walking One Plus1 Plus1 Ozone Ozone Retreat Laying 1 6

the number of attributes for each datum and the outlier class.

Where a dataset has a specified train/test sets we used
those, otherwise we used the first 66% of the data (sorted in
chronological order) as the training set and the remainder
for test. This ensures that the training data all precede the
test data and we are not using future data to predict past
data. The data were not cleaned nor missing values imputed
as all algorithms handle missing values. Where a dataset
already contains the time-series we used that; otherwise we
used a time-series window of 20 points which replicates the
data length in our IoT/transport problems. The vector Xj

represents a time-series. We slide a window representing
a preset time interval over Xj to subdivide it into buffers

XTS
j . Buffering always preserves the temporal ordering of

the data.
XTS

j is {x1t−19
, x1t−18

, x1t−17
, ... ,xyt−2

, xyt−1
, xyt

} for

20 time slices {t-19, t-18, ..., t-1, t} and y sensors.

4 Results

The first analysis is to compare the classification accuracy of
the six algorithms. We varied the parameter settings of the
various algorithms and ensured that we tried an equivalent
number of parameter configurations for each algorithm for
equality. The accuracy is calculated across all records and
classes in each dataset. The results are listed in table 2.

The second analysis compares the outlier detection ac-
curacy of the six algorithms. Again, we varied the parameter
settings of the algorithms and evaluated an equivalent
number of configurations. For outlier detection, some
datasets have an outlier class which we used. Otherwise, we
calculated the accuracy using the class most dissimilar to
the others, for example, a walking activity when all other
activities are sedentary (sitting, lying, standing, etc.); see
table 1 for details of the data sets and which class we used
as the outlier class. The accuracy results for the data sets are
listed in table 3.

5 Analysis

For classification (see table 2), GBM outperformed all
other algorithms across all datasets. It achieves the highest
accuracy on 7 of the 10 datasets. It only underperformed
on one dataset: EEG Eye state where GBM achieves 55.8%
accuracy compared to 79.5% accuracy for k-NN. The fact
that an instance-based learner outperformed compared to
the model-based approaches indicates that this dataset is

difficult to model with a complex cluster structure. This is
supported by checking with linear regression which only
achieved 28.5% accuracy so the problem is highly non-
linear. Additionally, C4.5 (one decision tree) significantly
outperformed RF and GBM (ensembles of trees) on the
EEG Eye state data set indicating that an exact fit to the data
is required and an ensemble approach will not be specific
enough to be accurate.

For classification on these time-series data, GBM is
the best method overall from a general perspective but
cannot be guaranteed to be the best so other algorithms need
to be considered.

For outlier detection (see table 3), the picture is much
less clear. Bayes had the highest average accuracy across
all datasets but is not best on any dataset. RF is best on
4 datasets but does not find any outliers in the two Ozone
datasets. GBM is best on 3 datasets but also struggled
with the two Ozone datasets. These two datasets are very
unbalanced with only 7.5% outliers and 92.5% normal.
In contrast, both RF and GBM performed well for clas-
sification on these data sets. They are classifying normal
data well but misclassifying outliers suggesting over-fitting.
C4.5 and Naive were best on 2 datasets. Similarly, C4.5
under-performs for outlier detection on data sets it classified
well indicating over-fitting. Naive seems less prone to over-
fitting and tends to perform poorly for outlier detection on
the same data sets it performed poorly on for classification.

For outlier detection, we recommend considering a
number of algorithms. We recommend GBM and RF for
high accuracy on some data sets but poor on unbalanced
data. The data set can be pre-processed to balance it if
sufficient data are available or a cost matrix used with the
algorithm to penalize misclassification of outliers or the
tree size limited to prevent over-fitting. Similarly C4.5 can
perform well but over-fits some data sets. Naive can perform
well but struggle with some data sets. Bayes is good on
most data sets but never the best. The only algorithms that
can be discounted for outlier detection on these data are
LR and k-NN which had low overall accuracy and do not
perform best on any datasets.

6 Conclusion

In this paper, we evaluated algorithms for both classification
and outlier detection for an on-line system that assimilates
new data regularly. We aimed to derive heuristics for the



Table 2: Classification accuracy (%) of the six algorithms over the 10 datasets.

Dataset JSI EEG Ford1 Ford2 O1hr
3

O8hr
3

Robot Har Occ Elec

Bayes 61.7 71.4 69.6 58.5 78.5 72.0 95.6 86.6 86.3 46.5
C4.5 69.8 77.2 72.0 58.3 98.7 94.8 98.5 82.0 96.4 56.0
kNN 72.8 79.5 68.7 60.1 98.6 95.5 85.5 91.5 92.9 59.3
Naive 54.7 22.8 53.7 62.1 66.9 64.4 83.3 79.9 95.6 51.3
RF 70.8 60.3 86.1 60.6 98.7 96.1 98.9 92.6 98.0 65.5
GBM 75.3 55.8 88.6 60.2 98.8 98.7 99.4 94.0 96.2 67.4

Table 3: Outlier detection accuracy (%) of the six algorithms over the 10 datasets.

Dataset JSI EEG Ford1 Ford2 O1hr
3

O8hr
3

Robot Har Occ Elec

Bayes 78.3 69.4 80.9 95.6 81.8 82.4 92.3 98.8 90.8 18.3
C4.5 85.1 0.0 70.3 76.5 18.2 26.5 95.4 100.0 84.1 39.0
kNN 89.7 19.8 43.0 48.4 27.3 35.3 70.3 97.3 80.9 28.3
Naive 65.5 58.2 24.9 90.7 90.9 91.2 84.1 94.4 88.0 37.8
RF 89.9 75.8 94.5 98.5 0.0 0.0 97.1 97.5 92.2 32.2
GBM 93.3 28.5 92.6 81.8 9.1 0.0 97.3 100.0 91.5 21.4

best algorithms. For classification, GBM was best. However,
it did not excel on every dataset. For a dataset with complex
structure (non-linearity) where an ensemble method will
fail and a very specific approach is needed, then k-NN or
C4.5 are better. It is not possible to derive a simple heuristic
for outlier detection indicating that a number of algorithms
need to be evaluated. We ruled out LR and k-NN as they
underperformed across all datasets. Bayes is a good all
round algorithm but does not excel. Hence, RF and GBM
are generally better then C4.5 or Naive so these are the
likely algorithms to try. C4.5, GBM and RF struggled on
datasets with very few outlier examples in the training data
probably due to over-fitting. It may be possible to overcome
over-fitting by introducing a cost matrix or limiting tree
size. Alternatively, if sufficient data are available then the
data set may be balanced.

As with (Bagnall et al. 2017), we have not exhaus-
tively optimized the algorithms under investigation. For
example, we fixed the maximum number of parameter
combinations tried for each algorithm rather than fixing
the maximum processing time for each algorithm. This
could be considered unfair to faster algorithms which could
evaluate more parameter combinations in a fixed time but
we felt provides more fairness for an accuracy evaluation.
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