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ABSTRACT
Ensuring the uniqueness of trademark images and protect-
ing their identities are the most important objectives for
the trademark registration process. To prevent trademark
infringement, each new trademark must be compared to a
database of existing trademarks. Given a newly designed
trademark image, trademark retrieval systems are not only
concerned with finding images with similar shapes but also
locating images with similar layouts. Performing a linear-
search, i.e., computing the similarity between the query and
each database entry and selecting the closest one, is ineffi-
cient for large database systems. An effective and efficient
indexing mechanism is, therefore, essential to select a small
collection of candidates. This paper proposes a framework
in which a graph-based indexing schema will be applied to
facilitate efficient trademark retrieval based on spatial rela-
tions between image components, regardless of mutual shape
similarity.

Our framework starts by segmenting trademark images
into distinct shapes using a shape identification algorithm.
Identified shapes are then encoded automatically into an at-
tributed graph whose vertices represent shapes and whose
edges show spatial relations (both directional and topolog-
ical) between the shapes. Using a graph-based indexing
schema, the topological structure of the graph as well as
that of its subgraphs are represented as vectors in which the
components correspond to the sorted Laplacian eigenvalues
of the graph or subgraphs. Having established the signa-
tures, the indexing amounts to a nearest neighbour search
in a model database. For a query graph and a large graph
data set, the indexing problem is reformulated as that of
fast selection of candidate graphs whose signatures are close
to the query signature in the vector space. An extensive set
of recognition trials, including a comparison with manually
constructed graphs, show the efficacy of both the automatic
graph construction process and the indexing schema.
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Figure 1: Two trademarks resemble each other
based on the layout of their shapes despite the
dissimilarity between their individual component
shapes.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Content-based Image Retrieval, Trademark Retrieval, In-
dexing, Laplacian spectrum

1. INTRODUCTION
One of the highly active research areas within the broad

field of shape matching and Content-based Image Retrieval
(CBIR) is trademark retrieval. Trademarks (or, logos) 1

come in different forms, with varying kinds of unique prop-
erties. Textual information, shape, layout, and in some cases
colour are probably the most important ones. Ensuring the
uniqueness of trademarks and protecting their identities are
the most important objectives for the trademark registra-
tion process. To prevent trademark infringement, each new
trademark must be compared to the database of existing
trademarks. Traditionally, this process is done by assigning
keywords to shapes using predetermined vocabulary such
as the Vienna classification and searching trademarks based
on the keywords [21]. Since these kinds of methods involve
heavy human interference, automatic trademark retrieval is
of great importance.

Given a query image, most automatic trademark retrieval
systems aim to find images with similar shapes without tak-
ing into account the spatial layout of the shapes. Although
retrieving images containing similar shapes may seem as the

1defined by the UK patent office as a sign which can dis-
tinguish the goods and services of one trader from those of
another, and be represented graphically
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Figure 2: Three different configurations of 5 circles.
Suppose the leftmost image, the Olympic logo, is
used as a query. Because of a similarity in layout,the
middle image should receive a higher vote than the
rightmost image, despite the fact that pure shape
similarity on components is the same.

primary goal, there are many cases where the layout simi-
larity plays a more important role for ensuring uniqueness.
An example of this scenario is given in Figure 1 in which the
layout of the shapes reveals a strong figure in itself. The two
trademarks resemble each other despite the dissimilarity be-
tween their individual shapes. In case these two trademarks
are to be registered in the same or in a closely related prod-
uct group or service category, a conflict of uniqueness arises.

Layout similarity between trademarks is also used to im-
prove the quality of matching based on shape similarities.
Consider Figure 2, where two candidates are returned with
the same similarity scores against a given query. Although
they both contain the same shapes, the middle candidate
should be assigned a stronger similarity value since its shapes
are in a configuration similar to that of the query. Hence,
one may observe that applying layout similarity improves
the overall quality of a trademark retrieval system.

The work presented in this paper proposes a framework in
which a graph-based indexing schema will be applied to facil-
itate efficient trademark retrieval based on spatial relations
between image shapes regardless of their mutual shape sim-
ilarities. Our framework begins by segmenting trademark
images into distinct shapes using a closed shape identifica-
tion algorithm. A simple edge detector would not be suffi-
cient as many images in our test set are noisy and this noise
causes small gaps in the shape boundaries so these gaps need
to be closed. In practice any closed shape identifier could
be used here, such as region growing [29] or watershed [3].

We chose to refine and adapt Saund’s closed shape identifi-
cation algorithm [25] within the PROFI project [15]. Saund’s
approach was developed for the sketch retrieval domain but
is equally applicable to the trademark retrieval domain. Our
adapted algorithm integrates seamlessly with our other project
software and provides two complementary versions. Us-
ing two complementary versions of the same technique en-
sures consistency which is essential in image retrieval. For
this evaluation, we use a simplified version of our algorithm
[15]. The simplified version aims to find just the basic
shapes present in an image as the graph layout matching
requires only the basic shapes compared to the more per-
ceptual shapes perceived using Gestalt2 principles [27, 16]
discovered by our complementary version. In figure 3, we
are interested in the three small triangles (to the left in fig-
ure 4) for our evaluation here but not the larger perceptual
triangle formed by the three smaller triangles (to the right

2The Gestalt principles refer to the shape-forming capabil-
ity of human vision. In particular, they refer to the visual
recognition of figures and whole shapes rather than just ’see-
ing’ a simple collection of lines and curves.

Figure 3: A sample trademark image.

Figure 4: Possible shapes identified in figure 3.

in figure 4). The fact that the three small triangles form a
larger triangle will be discerned by the layout indexing so
we do not need to find it here. The two approaches may
therefore be viewed as complementary. The simple closed
shape approach used here to find the basic shapes which
feed into a layout indexing algorithm where the layout in-
dexing infers the perceptual relations. The more perceptual
closed shape approach described in [15] finds the perceptual
shapes which may be used for shape matching where simi-
larity is determined by ”shape” and which requires higher
level (perceptual) shapes for matching.

Given this set of shapes identified within a trademark,
its layout is then encoded automatically into an attributed
graph whose vertices represent shapes and whose edges show
spatial relations (both directional and topological) between
the shapes. Using a new graph-based indexing schema, the
topological structure of the graph as well as that of its sub-
graphs are represented as vectors in which the components
correspond to the sorted Laplacian eigenvalues of the graph
or subgraphs. Having established the signatures, the index-
ing now amounts to a nearest neighbour search in a model
database. For a query graph and a large graph data set, the
indexing problem is reformulated as that of fast selection
of candidate graphs whose signatures are close to the query
signature in the vector space.

The rest of the paper is organized as follows. After giving
an overview of the related work in Section 2, we review the
basics for our shape identification algorithm in Section 3.
Section 4 presents a method to encode shape layouts in a
graph. We give the details for our graph-based indexing
algorithm in Section 5. Our framework is evaluated in the
domain of trademark retrieval in Section 6. We close the
paper with our conclusions and future work in Section 7.

2. RELATED WORK
Since our framework consists of encoding layout of a trade-

mark in a graph and graph-based indexing, we will sepa-
rately review the related work in these two concepts.

2.1 Encoding layout
The spatial relations between two objects in an image can

be divided into topological and directional relations. Egen-
hofer [8] describes 8 basic topological relations: disjoint,
contains, inside, meet, equal, covers, covered-by and over-
lap. Directional relations are usually represented by the four
primary directions (North, South, East and West) and the
four secondary directions (NW, SE, SW and SE). An alter-



native for this representation is the angle between the line
connecting the two centres of mass and the horizontal line.
For instance, the latter method was used by El-Kwae et al.
[9] and Gudivada et al. [13].

A method for encoding layout taking into account only
directional information was proposed by Chang et al. [5]
and is called 2D-Strings. To produce a 2D-string represen-
tation, the centre of mass of each object in the image is
projected on the x and y axes. By taking the objects from
left to right and from below to above, two one-dimensional
strings are obtained, in which the objects are represented
by a class identifier. The shape matching problem is now
transformed into string matching. Various extensions have
been proposed such as the 2D G-String [4], 2D C-String [17].
These extensions deal mainly with overlapping objects with
complex shapes.

Petrakis and Orphanoudakis [23] propose an indexing scheme
based on 2D-Strings. For each image, all possible subsets of
size 2 up to a predefined number Kmax are created. These
subsets are represented by a string taking into account both
layout information and object specific information: the or-
der (as in a 2D-String), inclusion properties, object size,
roundness and orientation.

A major drawback of these symbolic projection methods
such as 2D-strings is that in general they are not rota-
tion invariant. Therefore, El-Kwae et al. [9] propose a
robust Framework for Retrieving Images by Spatial Simi-
larity (FRISS). It can handle translation, scaling, perfect
rotation (all objects in the image are rotated around a ref-
erence point with the same angle), multiple rotation (objects
are rotated around a reference point with different angles).
Furthermore, it takes into account topological relations be-
tween the objects and shape-based similarities.

A popular alternative that has also been applied in this
paper is the graph representation. Gudivada and Raghavan
[13] propose spatial orientation graphs (SOG’s), in which
each vertex represents an object and the edges between
them are weighted with the slope of the line connecting the
two centres of mass. The distance between two graphs is
calculated by finding the angle between each pair of corre-
sponding edges. ImageMap [22] proposed by Petrakis and
Faloutsos extends this idea. The images are represented by
attributed relational graphs (ARG’s), storing object size,
orientation, and roundness in the nodes and distance, an-
gle, and contains-relationships in the edges. This approach
first computes an n × n distance matrix, where each entry
corresponds to the graph-edit distance between its corre-
sponding graph pairs. The graphs are then embedded into
an f -dimensional space (target space) using Fastmap [10]
such that the distances in the target space are approximately
equal to those in the original graph space. The method for-
mulates the image retrieval problem as that of range search
in the target space. The embedding process in this method
does not preserve the distances exactly, but the distances
are distorted up to a certain degree. Although powerful, the
method suffers from the limitations of the graph-edit dis-
tance approach. Specifically, if the graphs are not trees then
the graph distances cannot be computed in polynomial-time
using this approach. In addition, due to the fact that the
graph-edit distance does not deal well with the occlusion, it
is not clear how this indexing schema performs against noise
and occlusions.

2.2 Graph indexing and spectral methods
Our method deploys a graph representation for encod-

ing a trademark’s layout. The problem of retrieving similar
graphs to a given query may be solved by finding graphs
that are isomorphic to the query or one of its subgraphs.
One important indexing method solving this problem is a
decision tree approach. Here, the goal is to hierarchically
partition the database so that the query is first matched to
the root. Depending on the result of this match, the query
is then matched to either the right or the left child of the
root. This process is repeated recursively until a match is
found at an internal node (or leaf), or it exits with a fail-
ure indicating that no database graphs are isomorphic to
the query. Messmer and Bunke [19] use this approach to
organise the set of all permutations of the adjacency ma-
trix of database graphs in a decision tree. At run time, the
(sub)graph isomorphisms from the query to the database
graphs are found by a decision tree traversal. A significant
drawback of this method is its space requirement. All per-
mutations of the adjacency matrix have to be encoded in
decision trees, whose sizes grow exponentially with the size
of the database graph. A set of pruning techniques is dis-
cussed to cut down the space complexity.

Although indexing methods with (sub)graph isomorphism
detection algorithms are effective, due to noise, occlusion, or
segmentation errors, no (sub)graph isomorphism may exist
between the query and the database. Furthermore, only
a certain degree of similarity between two graphs may be
present. The indexing problem, therefore, is reformulated as
efficiently retrieving database graphs whose (sub)structure
is similar to the query. Although considerable research has
been devoted to the problem of inexact (or error-tolerant)
graph matching, rather less attention has been paid to this
type of indexing based on graph structures.

An indexing framework related to the approach reported
in this paper is that of Shokoufandeh et al. [26]. This
framework is designed especially for tree structures in which
the sum of the largest eigenvalues of the adjacency ma-
trix for each subtree of the root form the component of
its δ−dimensional vector, where δ is the root degree. To
account for occlusion and local deformation, these vectors
are also computed for the root of each subtree. At indexing
time, each non-leaf node of the query is represented as such
a vector, and a nearest neighbour search is performed for
each vector. Although effective, by summing up the largest
eigenvalues one loses uniqueness, resulting in less represen-
tative graphs in the vector space.

3. CLOSED SHAPE IDENTIFICATION
Prior to the encoding of layout in graphs, we require a

shape identification algorithm to segment the trademark
into separate closed shapes. For this evaluation, we use a
simplified version of our adapted algorithm [15]. The simpli-
fied version aims to find just the basic shapes present in an
image as the graph layout matching requires only the basic
shapes.

Our closed shape algorithm requires an underlying tech-
nique to identify the line segments within an image and to
detect the relationships between those line segments. The
closed shape identifier then uses this output to identify the
closed shapes. Therefore, we initially find the edges in an
image and subdivide these into constant curvature segments



using the Sarkar & Boyer [24] edge detection algorithm and
the Wuescher & Boyer [28] curve segmentation algorithm.
These methods are used as they have been successfully used
in the trademark system developed by Alwis [1]. The Sarkar
& Boyer method finds the edge lines in an image and splits
these lines into primitives. Wuescher & Boyer aggregates
these primitives into more perceptually-oriented constant
curvature segments. These segments thus provide the build-
ing blocks for our closed shape identifier. From these con-
stant curvature segments, we produce a graph of segment
relations. Each constant curvature segment becomes a node
in the graph with two ends (first point (denoted as an x,
y coordinate) and last point (also denoted as an x, y co-
ordinate)). In our simplified implementation here, we find
all segments that are end-point proximal within two pixels
length. This effectively joins the graph by linking the prox-
imal end-points. The resulting graph underpins the closed
shape identification algorithm.

Our closed shape algorithm overlays this graph. Saund’s
approach focuses on managing the search of possible path
continuations through the graph, particularly where the graph
nodes represent junctions (crossroads, T-junctions etc) of
lines in the original image. We use the same technique here.
The closed path search commences from each end (first and
last) of each node (line segment) identified by the underlying
Wuescher & Boyer algorithm. For each end (first then last)
in turn, all possible paths are followed. This effectively forms
a search tree with paths through the tree representing the
paths of candidate shapes. The search is managed through
the use of Saund’s local criteria [25] (scores) for ranking
possible paths through junctions. Saund derived the scores
from observations. These scores prioritise which node to ex-
pand next. As each leaf node in the tree is expanded, any
new child nodes are compared with child nodes in the oppo-
site side of the tree. If they are end-point proximal then a
closed path has been identified and its nodes and pixels are
added to the list of candidate paths. To produce the set of
shapes for each image in this paper, we accept all candidate
paths. However, closed paths that are subsumed by other
closed paths with higher scores are discarded. Hence, each
new closed path is compared to all existing stored paths.
If the new path is equivalent to an existing path but has
lower score then the new path is discarded. If the new path
has higher score than the existing saved path then the saved
path is discarded.

In our simplified approach used in this paper, we have in-
cluded three changes from our usual method. We measure
end-point proximity as within a 2 pixels length, normally
we use Lowe’s method [18] to extract endpoint proximity
which is more perceptually plausible as it uses the ratio of
line length to gap length [15] to decide when two lines are
end-point proximal. We keep all candidate paths that are
not subsumed, normally we use a minimum score threshold
to identify plausible shapes as our previous approach [15]
is aimed at identifying shapes perceived using Gestalt prin-
ciples. Finally, we keep all paths as our set of shapes for
the image, normally we use a global goodness score to as-
sess perceptual relevance and discard perceptually irrelevant
shapes (see [15]).

4. ENCODING LAYOUT IN GRAPHS
Our indexing schema can handle graphs carrying different

kinds of layout information. In the experiments conducted

for this paper, the vertices in the graphs correspond to the
shapes in the trademark image, and the edges between them
carry relations between them. Foremost, we encode the di-
rectional information (in the form of both primary and sec-
ondary directions). Rotational invariance can be achieved
on demand, by neglecting for instance the difference between
a south-north edge and a east-west edge. Furthermore, we
are interested in detecting certain basic layout configura-
tions that often occur in trademarks, such as triangular, cir-
cular or square configurations. If one or more of these types
of layout are present in a trademark, they are encoded in
the appropriate edges too.

The trademarks are segmented into individual shapes us-
ing the method described in the previous section. After
this stage, their centroids are used as shape representatives
to calculate the appropriate information and determine the
edge labels. Each shape is connected to its n nearest neigh-
bors, where n is a user defined parameter. The first step is
to calculate the angle between the horizontal axis and a line
connecting two centroids to determine the directional label
for this edge. In principle there are eight possible directions
(4 primary and 4 secondary), but the edges are undirected
so there are four possible directions for each edge.

The next step is to detect the special pattern ’square’.
This is done by performing a template match on the direc-
tional graph with a template representing a configuration of
four shapes in a 2 × 2 square. Whenever this template is
found, the edge labels are updated accordingly from the di-
rectional information to the special edge type square. Note
that the square needs to be isolated to a certain extent;
e.g. a grid is not a large collection of squares according to
this definition. The same kind of template matching is per-
formed for triangular and circular configurations. The deci-
sion of triangularity depends on the angles between the pos-
sibly triangular edges. Since every triplet of objects forms
a triangle by definition, only the edges of a perfect triangle
(or close to a perfect triangle) are labeled with the special
triangle edge type. To detect circular configurations, the fol-
lowing circularity criterion is evaluated on the convex hull of
the shape centroids: 4πA�ρ2, where A is the area and ρ is
the perimeter of the convex hull. A threshold is set on the
outcome of this circularity criterion to determine whether
the edges on the convex hull need to be labeled with the
special circular type or not.

In the experiments, the trademarks in our dataset are clas-
sified based on their layouts, not on the shapes they consist
of. This classification was used to measure the retrieval
performance. Since trademark retrieval and similarity are
complex issues involving specific knowledge of perception
and trademark logic, we presented our classification to a
group of experts at Aktor Knowledge Technology who ex-
amine trademark similarity in commercial surroundings on
a daily basis. It was only after their concise inspection of
our dataset and classification, that we could be sure con-
ducting our experiments and measuring performance are in
correspondence with the real trademark similarities.

5. INDEXING VIA LAPLACIAN SPECTRA
Given a query graph and a large database, the objective

of an indexing algorithm is to efficiently retrieve a small
set of candidates, which share topological similarity with
the query or one of its subgraphs. In our framework, we
encode the topology of a graph through its laplacian spec-



trum. The laplacian matrix L(G) of graph G is computed
as L(G) = D(G)− A(G), where D(G) is the degree matrix
and A(G) is the adjacency matrix for G. The spectrum of a
graph’s laplacian matrix is obtained from its eigendecompo-
sition. More formally, the eigendecomposition of a laplacian
matrix is L(G) = PΛP T , where Λ = diag (λ1, λ2, . . . , λ|V |)
is the diagonal matrix with the eigenvalues in increasing or-
der and P = (p1|p2| . . . |p|V |) is the matrix with the ordered
eigenvectors as columns. The laplacian spectrum is the set
of eigenvalues {λ1, λ2, . . . , λ|V |}.

Our main motivation for encoding the topology of a graph
using the lapcacian rather than the adjacency matrix as
done by earlier work [26] comes from the fact that lapla-
cian matrices are more natural, more important, and more
informative about the input graphs [20]. Previously, Godsil
and McKay [11] and more recently Haemers and Spence [14]
have also shown that the laplacian matrix has more repre-
sentational power than the adjacency matrix, i.e., it results
in less number of cospectral graphs. Recall that two graphs
are called cospectral (or, isospectral) if they have the same
eigenvalues.

In our framework, we define the signature of a graph as the
sorted eigenvalues of its laplacian matrix. To compute the
similarity between two graphs, we compute the Euclidean
distance between their signatures, which is inversely pro-
portional to the structural similarity of the graphs. For a
given query, retrieving its similar graphs, therefore, can be
reduced to a nearest neighbor search among a set of points.

Unfortunately, this formulation cannot deal with occlu-
sion or segmentation errors as two graphs may share similar
structures up to only some level. Although adding or re-
moving edges changes the laplacian spectrum, the spectrum
of the subgraphs that survive such alteration will not be af-
fected. Our indexing mechanism, therefore, cannot depend
on the signature of the whole graph only. Instead, we will
combine the signatures of the subgraphs in the framework.

Let G = (V, E) be a graph and let G′ be a graph obtained
from G by adding a new edge e′ such that e′ /∈ E. Then the
following theorem, known as the interlacing theorem, relates
the laplacian spectrum of both graphs 3.

Theorem 1. The eigenvalues of G and G′ interlace:

0 = λ1(G) = λ1(G
′) ≤ λ2(G) ≤ λ2(G

′) ≤

. . . ≤ λn(G) ≤ λn(G′).

In addition, it is known that
∑n

i=1(λi(G
′)− λi(G)) = 2 [2].

Therefore, at least one inequality is strict. Overall this the-
orem implies the following. Assume that we are given a pair
of isomorphic graphs g1 and g2. If we construct G1 and
G2 out of g1 and g2 by adding different edges to each of
them, one at a time, the laplacian spectra of G1 and G2 be-
come proportionally less similar. As a result, the similarity
between the signatures of G1 and G2 may not reflect the
similarity between the signatures of their subgraphs g1 and
g2. This shows that constructing an indexing mechanism
based on graph signatures alone is too weak. An ideal in-
dexing framework should, in fact, select candidate database
elements based on both local and global similarities. To ac-
count for both local and global information, we will adopt

3This theorem is obtained by Courant-Weyl ([6], Theorem
2.1). The reader may also refer to [12].

Figure 5: Retrieving similar graphs. For graphs
given in Part (a), its subgraphs are constructed in
Part (b). A signature is computed for each subgraph
in Part (c). Given a signature, retrieving its simi-
lar graphs from a large database is formulated as a
nearest neighbor search as shown in Part (d).

the following method analogous to that used in the decision
tree approach [19].

For a given database graph G = (V, E), rather than stor-
ing its signature in the system only, we compute the sig-
natures of each subgraph of G in our algorithm. In this
process, we gradually increase the size of the subgraphs.
Since the sorted eigenvalues are invariant under consistent
re-orderings of the graph’s vertices, it is sufficient to com-
pute the spectrum of permutation-similar matrices once.
This property avoids the need for a high-load compilation
process described for adjacency matrices in the decision tree
approach.

Associated with each signature in the system is a pointer
to the corresponding graph or subgraph in the database. At
runtime, we first generate the signature of each subgraph
of the query. Given a query signature sq, we retrieve its
nearest neighbors of the same size from the database through
a nearest neighbor search (see Figure 5). Each neighbor of
sq retrieved from the database gets a vote whose value is
inversely proportional to the distance from sq. Thus, as a
result, each signature of the query generates a set of votes.
Moreover, we weigh the votes according to the size of the
subgraphs corresponding to the signatures, i.e., the bigger
the size, the more weight the vote receives.

Our encoding of a graph’s structure captures its local
topology, thus allowing for its use in the case of occlusion
and segmentation errors. Furthermore, the signature of a
graph is invariant under the reorderings of its vertices. This,
in turn, allows us to compare the signatures of a large num-
ber of graphs without solving the computationally expensive
correspondence problem between their vertices. In addition,
based on Theorem 1, not only do isomorphic graphs share
the same signature, non-isomorphic but similar graphs or
subgraphs have close signatures in the vector space. The
database, therefore, can be pruned without losing struc-
turally similar graphs to the query.

6. EXPERIMENTS
In this section we evaluate our framework in the context of

a trademark retrieval experiment. We use a set of 450 trade-
mark images from the UK PTO dataset used in the Artisan
project [7]. Figure 6 shows some trademark images used in
the experiments. We begin by representing the layout of



Figure 6: Some trademark images used in the ex-
periments.

each image in the database as a graph. Given a graph, we
compute the signatures for each of its subgraphs and popu-
late the resulting signatures in the vector space. We applied
the following leave-one-out procedure to the datasets to eval-
uate the framework in the experiments. We initially remove
the first graph from the database and use it as a query for
the remaining database graphs. The graph is then put back
in the database and the procedure is repeated with the sec-
ond graph from the database, etc., until all database graphs
have been used as a query.

To check our segmentation and automatic graph construc-
tion procedures, the graph representation process was also
performed manually in our experimental setup. Specifically,
we manually selected shapes for each input trademark im-
age, created a vertex for each shape, and connected two ver-
tices by an edge if the layout of the corresponding shapes
should be encoded in the graph based on the human per-
ception. As a result, one manually and one automatically
constructed graph datasets have been generated. The per-
formance of the proposed indexing algorithm was evaluated
for each dataset.

Precision and recall are two well-known performance mea-
sures to compute the quality of an indexing mechanism. In
high precision, relevant items are in the top of the ranking,
whereas in high recall, false negatives are avoided and the
returned result contains all relevant objects. A good index-
ing system should, in fact, perform well according to both of
these two measures. We conducted two sets of experiments
to cover both scenarios. In the first experiment, our goal
is to quickly determine the class of the query. In the sec-
ond experiment, the objective is to return a small candidate
set, which contains all the objects belonging to the query
class. In both experiments, the indexing system ranks the
database graphs in decreasing order of similarity from each
query graph. According to the results, in 98.4% and 89.1%
of the cases, the most similar database graph belongs to the
correct shape class for manually constructed and automat-
ically constructed datasets, respectively (nearest-neighbor
rates). In addition, the worst position of the closest match-
ing graph is 5 for manual graphs, while this number is 9
for automatic graphs. These numbers show that 98% of
the datasets can be pruned by the indexing mechanism to
determine the correct layout class for a query. In the sec-
ond experiment, the system’s performance was evaluated by
computing the total number of retrieved images that is nec-
essary to retrieve the entire query class (maximum minimal
scope). Our results show that the first 71 of the candidate
return set always contains all the graphs belonging to the
query class for manual graphs; this number is 80 for auto-
matic graphs. This indicates that for this task our frame-
work prunes more than 84% and 82% of the manual and
automatic graph datasets, respectively. In other words, the

recall in each dataset is 100% if the scope is set to the first
16% and 18% of the sorted candidate models for manual
and automatic graphs respectively. We also computed how
many of the models in the query’s class appear within the
top K − 1 matches, where K is the size of the query class
(first tier). This number was 91.2% for manual graphs and
86.3% for automatic graphs. Repeating the same experi-
ment but considering the top 2 × K − 1 matches (second
tier) covers 98.1% and 91.7% members of the layout classes
for manual and automatic graph datasets, respectively.

In Table 1, we have presented the matching results for a
small subset of trademark images whose graphs were gener-
ated automatically using our approach. The first column of
each row represents the query image; the remaining elements
of each row show the top 10 closest database trademarks
retrieved by our indexing algorithm. Squares are drawn
around the wrong matches. In all but once case (row 5) the
closest trademark image belongs to the same layout class
as the query. Although the closest match for the query in
row 5 was classified as a mismatch, one may notice that
the query consists of three sets of small squares on top of
each other and each set has the same layout as the mis-
match. As another example, consider the query in row 8 of
the left-right class and its first mismatch of the triangle class.
Notice that three small triangles in the mismatch have the
same layout as the query. Overall, rather than focusing on
the mismatches that occur because of the result of a partial
match, we observed that the wrong selections happen mainly
due to the poor segmentation of the trademark. If different
shapes in a trademark are connected, for instance, our seg-
mentation algorithm detects them as one shape. Thus, the
layout within these shapes are not encoded in the graphs.
We will extend our segmentation technique to region-based
and will use it within our framework in the future.

7. CONCLUDING REMARKS
In this paper we have presented a framework for retriev-

ing trademark images based on spatial layout of the shapes.
Besides pure shape similarity between trademark images,
similarities in configuration of the shapes may also give rise
to a conflict of uniqueness. The process of content based
trademark retrieval, therefore, can be significantly improved
by taking into account these layout features, enabling a
stronger prevention of trademark infringement.

In our framework, trademark images are first segmented
into closed, distinct shapes. This segmentation is line based;
after an initial edge detection step, the shape boundaries are
subdivided into constant curvature segments. These seg-
ments are then aggregated to more perceptually relevant
primitives, which form the input blocks for the closed shape
identifier. By searching for closed paths in the primitives,
the shapes are returned and passed on to the next layer of
our framework, the construction of a layout graph.

The centroids of the shapes are taken as shape represen-
tatives while constructing a graph that reflects the layout of
the trademark. Each shape is represented by a vertex, and
connected to a predefined number of nearest neighbors, and
layout information is stored in the edges that connect these
vertices. After the graph construction, the laplacian ma-
trix is taken (by subtracting the adjacency matrix from the
degree matrix) and its spectrum is computed. Every trade-
mark is then stored in a database, by populating a vector
space with the laplacian spectra. The laplacian spectrum



Query Top 10 Matched Images

Table 1: Top matched models are sorted by the similarity to the query.



reflects important properties of the graph and its topology.
Besides computing the laplacian spectrum of the complete
graph, we also store this feature vector for every possible
subgraph to perform partial matching.

We evaluated our framework on a test collection of 450
real trademark images and the results are promising. First
and second tier results, averaged over all possible queries,
were 86.3% and 81.7% respectively. It is one of our future
works to extend the test collection and perform a compari-
son with other, known layout indexing techniques. Further-
more, we want to take into account topological information
as well, besides the directional information and special con-
figurations that are encoded now. Finally, we will use a
region-based segmentation algorithm within our framework
to reduce the number of mismatches that occured because
of the current line-based segmentation procedure.
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[6] D. Cvetković, M. Doob, and H. Sachs. Spectra of
Graphs: Theory and Application. VEB Deutscher
Verlag der Wissenschaften, Berlin, 2nd edition, 1982.

[7] J. P. Eakins, K. Shields, and J. M. Boardman.
Artisan: A shape retrieval system based on boundary
family indexing. In Storage and Retrieval for Image
and Video Databases (SPIE), pages 17–28, 1996.

[8] M. Egenhofer and R. Franzosa. Point Set Topological
Relations. International Journal of Geographical
Information Systems, 5(2):161–174, 1991.

[9] E. El-Kwae and M. Kabuka. A Robust Framework for
Content-Based Retrieval by Spatial Similarity in
Image Databases. ACM Transactions on Information
Systems, 17(2):174–198, April 1999.

[10] C. Faloutsos and K. Lin. FastMap: A fast algorithm
for indexing, data-mining and visualization of
traditional and multimedia datasets. In M. J. Carey
and D. A. Schneider, editors, Prooceedings of ACM
SIGMOD ’95, pages 163–174, San Jose, California,
22–25 1995.

[11] C. Godsil and B. McKay. Constructing cospectral
graphs. In Aequationes Mathematicae, pages 257– 268,
1982.

[12] R. Grone, R. Merris, and V. S. Sunder. The laplacian
spectrum of a graph. SIAM Journal on Matrix
Analysis and Applications, 11:218–238, 1990.

[13] V. N. Gudivada and V. V. Raghavan. Design and
Evaluation of Algorithms for Image Retrieval by
Spatial Similarity. ACM Transactions on Information
Systems, 13(2):115–144, April 1995.

[14] W. H. Haemers and E. Spence. Enumeration of
cospectral graphs. Eur. J. Comb., 25(2):199–211, 2004.

[15] V. Hodge, J. Eakins, and J. Austin. Inducing a
perceptual relevance shape classifier. In ACM
International Conference on Image and Video
Retrieval, (CIVR07). July 9-11 2007, 2007.

[16] K. Koffka. Principles of Gestalt Psychology. Harcourt
Brace. New York, 1963.

[17] S. Lee and F. Hsu. 2d c-string: a new spatial
knowledge representation for image database systems.
Pattern Recognition, 23(10):1077–1087, 1990.

[18] D. Lowe. Three dimensional object recognition from
simple two dimensional images. Artificial Intelligence,
31(3):355–395, 1987.

[19] B. Messmer and H. Bunke. A decision tree approach
to graph and subgraph isomorphism detection.
Pattern Recognition, 32(12):1979–1998, 1999.

[20] B. Mohar. The laplacian spectrum of graphs. In Sixth
International Conference on the Theory and
Applications of Graphs, pages 871–898, 1988.

[21] W. I. P. Organisation. CD-NIVILO ISBN
92-805-1280-7. WIPO, 2003.

[22] E. Petrakis, C. Faloutsos, and K.-I. Lin. Imagemap:
an image indexing method based on spatial similarity.
In IEEE Transactions on Knowledge and Data
Engineering, volume 14, pages 979– 987, 2002.

[23] E. Petrakis and S. Orphanoudakis. A Methology for
the Representation, Indexing, and Retrieval of Images
by Content. Image and Vision Computing,
8(11):504–512, October 1993.

[24] S. Sarkar and K. Boyer. On optimal infinite impulse
response edge detection filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI),
13(11):1154–1171, 1991.

[25] E. Saund. Finding perceptually closed paths in
sketches and drawings. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI),
25(4):475–491, 2003.

[26] A. Shokoufandeh, D. Macrini, S. Dickinson,
K. Siddiqi, and S. Zucker. Indexing hierarchical
structures using graph spectra. IEEE Trans. Pattern
Analysis and Machine Intelligence, 27(7), 2005.

[27] M. Wertheimer. Laws of organization in perceptual
forms (1923)., 1938.

[28] D. Wuescher and K. Boyer. Robust contour
decomposition using a constant curvature criterion.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 13(1):41–51, 1991.

[29] S. Zucker. Region growing: Childhood and
adolescence. Computer Graphics & Image Processing,
5:382–399, 1976.

View publication stats

https://www.researchgate.net/publication/221368961

