
Under consideration for publication in Knowledge and Information
Systems

A Binary Neural k-Nearest Neighbour
Technique

Victoria J. Hodge and Jim Austin

Dept. of Computer Science,

University of York, YO10 5DD, UK,

{vicky,austin}@cs.york.ac.uk

Corresponding Author: Dr. Victoria Hodge,

Email: vicky@cs.york.ac.uk

Tel: +44 1904 433067

Fax: +44 1904 432767

Abstract. K-Nearest Neighbour (k-NN) is a widely used technique for classifying and
clustering data. k-NN is effective but is often criticised for its polynomial run-time
growth as k-NN calculates the distance to every other record in the data set for each
record in turn. This paper evaluates a novel k-NN classifier with linear growth and
faster run-time built from binary neural networks. The binary neural approach uses
robust encoding to map standard ordinal, categorical and real-valued data sets onto a
binary neural network. The binary neural network uses high speed pattern matching to
recall the k-best matches. We compare various configurations of the binary approach
to a conventional approach for memory overheads, training speed, retrieval speed and
retrieval accuracy. We demonstrate the superior performance with respect to speed and
memory requirements of the binary approach compared to the standard approach and
we pinpoint the optimal configurations.

Keywords: k-Nearest Neighbour, binary neural network, Correlation Matrix Memory,
parabolic kernel

1. Introduction

Standard k-NN is a widely applicable clustering, outlier detection and classifi-
cation technique that demonstrates high recall accuracy; see (Dasarathy, 1991;
Wettschereck, 1994; Hodge and Austin, 2004) for an overview of k-nearest neigh-
bour techniques. k-NN uses similar procedures for clustering, outlier detection
and classification: examining the distances to the nearest neighbours. To cluster

2 V. Hodge and J. Austin

data, the k-NN determines the distance to a record’s neighbours using some suit-
able distance metric such as Euclidean Distance so the cluster bounds may be
identified. During outlier detection (Knorr and Ng, 1998), the k-NN calculates
the distance between a record and its nearest neighbours. Any points with a
high distance to its nearest neighbours is designated an outlier. For classifica-
tion, k-NN examines those points in a particular data space lying nearest to a
query point. K-NN then uses the respective classifications of these nearest neigh-
bours to determine the class of the query point. There are various approaches
described in (Dasarathy, 1991; Wettschereck, 1994) for determining the class of
a point from the set of classes of its nearest neighbours such as majority vote or
weighted majority vote.

The computational growth of standard k-NN is O(n2) (Dasarathy, 1991; Knorr
and Ng, 1998) with respect to the number of records n in the data set as the
approach calculates the distance to each record for every record in the data set.
The computational complexity is also directly proportional to the dimensional-
ity of the data m so k-NN has O(n2m) runtime. As a result, there is a practical
upper limit to both the number of records and the data dimensionality that may
be processed even on modern high speed computers dependent on the processor
time available.

A method is desired to speed the identification of the k-nearest neighbours while
maintaining the recall accuracy of a standard k-NN procedure to allow extremely
large data sets to be processed. Two methods for speeding k-NN are: prototype
selection and attribute selection (Skalak, 1994). A large data set can be stored as
a few lower dimensional prototype vectors thus decreasing the k-NN processing
time exponentially (Skalak, 1994). However, prototyping must be applied care-
fully and selectively as it will increase the sparsity of the distribution and the
density of the nearest neighbours. Attribute selection demonstrates high accu-
racy when coupled with k-NN (Aha and Bankert, 1994) but is computationally
expensive due to the combinatorial problem of attribute subset selection. In this
paper we focus on speeding the underlying k-NN process and we note that both
prototyping and attribute selection will speed our k-NN further.

The aim of this paper is not to evaluate the clustering, outlier detection or
classification accuracy of k-NN as that has been well documented elsewhere (for
example (Wettschereck, 1994)) but to show the speedup achieved using the Ad-
vanced Uncertain Reasoning Architecture (AURA (Austin, 1995)) to implement
k-NN. The approach described in this paper is an enhancement of the binary neu-
ral network k-NN classifier described in (Zhou, Austin and Kennedy, 1999; Hodge
and Austin, 2003; Weeks et al., 2003) which is generically applicable to any pat-
tern classification or clustering task. It quantises numeric-values to form binary
vectors which are matched in the binary neural network. (Zhou, Austin and
Kennedy, 1999) demonstrated that the approach outperformed Multi-Layer Per-
ceptron (Bishop, 1995) and Radial Basis Function (Bishop, 1995) networks with
respect to speed and recall accuracy on a classification task. We demonstrated
that a previous version of the technique (Hodge and Austin, 2003) was faster
than standard k-NN with much lower computational growth while achieving
comparable accuracy. We showed in (Weeks et al., 2003) over 99% accuracy for
our AURA k-NN compared with standard k-NN. We used the AURA k-NN to
select a set of candidate matches and then post-processed the candidate matches

A Binary Neural k-Nearest Neighbour Technique 3

using standard k-NN. This paper augments the technique to further speed the
recall by a factor of 1.8 using a more accurate Squared Euclidean Distance ap-
proximation within the binary neural network so that no post-processing using
standard k-NN is necessary.

The first aim of the paper is to identify to what extent this numeric-to-binary
quantisation preserves the Euclidean distances between the attribute values and
thus whether our binary neural approximation recalls the correct nearest neigh-
bours as identified by a conventional Euclidean distance approach. The second
aim is to demonstrate the speedup achieved by using AURA compared to pro-
cessing the data set using standard Euclidean Distance k-NN. We also identify
the ideal configuration for the two data sets in this paper and provide heuristics
for determining the ideal configuration for other data sets.

In the remainder of this paper we provide: a detailed overview of binary neural
networks in section 2; AURA and our numeric-to-binary quantisation method in
section 3; a description of the evaluation methodology and the results in section
4; a detailed analysis and comparison of the methods evaluated in section 5; and
the conclusions we have drawn from our analyses in section 6.

2. RAMs

The AURA C++ library provides a range of classes and methods for rapid partial
matching of large data sets (Austin, 1995). AURA belongs to a class of neural
networks called Random Access Memory (RAM-based) networks. RAM-based
networks were first developed by (Bledsoe and Browning, 1959; Aleksander and
Albrow, 1968) for pattern recognition and led to the WISARD pattern recogni-
tion machine (Aleksander, Thomas and Bowden, 1984). They include Hopfield
Associative Memories (Hopfield, 1982). See also (Austin, 1998) for a detailed
compilation of RAM methods.

RAMs are founded on the twin principles of matrices (usually called Corre-
lation Matrix Memories (CMMs)) and n-tupling to store associations between
inputs Ij and outputs Oj as shown in figure 1. Each matrix accepts m inputs
as a vector or tuple addressing m rows and n outputs as a vector addressing n
columns of the matrix. During the training phase, the matrix weights Mlk are
incremented if both the input row Ijl and output column Ojk are set. During
recall, the presentation of vector Ij elicits the recall of vector Oj as vector Ij
contains all of the addressing information necessary to access and retrieve vector
Oj from the matrix.

In RAM-based networks, training is thus a single epoch process with one train-
ing step for each input-output association preserving their high speed. This also
makes associative memories computationally simple and transparent with well-
understood properties. In contrast, in most conventional neural networks used for
classification such as MLP or RBF, (Bishop, 1995), training takes time and the
resultant network is effectively a black box. RAM-based networks are able to par-
tially match records during retrieval. Therefore, they can rapidly match records
that are close to the input but do not match exactly. This partial matching is a
central concept for our binary k-NN described in the following paragraphs.

4 V. Hodge and J. Austin

Fig. 1. Diagram of a Correlation Memory Matrix with input vector i0, i1, i2, ..., im−1, im
and output vector o0, o1, o2, ..., on−1, on. The input vector addresses the rows and the output
vector the columns. The CMM is trained by associating input and output vectors which set
the elements in the CMM to 1. All elements are initialised as 0. In the diagram elements i0o1,
i1on, im−2o2 and imon−1 are set.

3. AURA

The AURA methodology has introduced a thresholding technique which we de-
scribe later that can retrieve the top n matches unlike the other RAM-based net-
works. During recall, AURA correlates the inputs to the stored matrix weights,
sums the matrix columns and thresholds the summed column totals to retrieve
sets of the best matching records. We have coupled this with a quantisation tech-
nique to map numeric data on to the binary inputs needed by the CMM. This
rapid training, computational simplicity, network transparency, partial match ca-
pability and thresholding coupled with our quantisation technique make AURA
ideal to use as the basis of an efficient k-NN implementation. A more formal
definition of AURA, its components and methods now follows.

CMMs, shown in figure 1, are the building blocks for AURA systems. AURA
uses binary and integer-valued input I and output O vectors to train records
in to the CMM and recall sets of matching records from the CMM. For the
methodology described in this paper, we:

– Train the data set into the CMM which indexes all records in the data set and
allows them to be matched.

– Apply query records to the CMM in turn and retrieve a set of the best matching
records, i.e., the nearest neighbours.

3.1. Training

In our k-NN implementation, input vectors represent quantised records during
CMM training and output vectors uniquely identify each record in the data set.
The training process is given in equation 1.

CMM =
∨

all j

Ij ×OT
j where

∨

is logical OR (1)

A Binary Neural k-Nearest Neighbour Technique 5

Training is a single epoch process with one training step for each input-output
association (each Ij×O

T
j in equation 1) which equates to one step for each record

in the data set.

3.1.1. Quantisation

The CMMs in AURA require binary input vectors for training so we need to
quantise (bin) and encode any numeric attributes. Our approach is to map the
attribute values onto bins each of which indexes a specific row in the CMM. Each
individual bin thus maps onto an integer as in equations 2 and 3 which identifies
the bit to set within the CMM input vector and thus corresponds to a row in
the CMM. Equation 2 represents the quantisation algorithm where a set of input
values for attribute f map onto each bin which in turn maps to a unique integer
to index the CMM row. We then set the appropriate bit in the input vector as
in equation 3. The range of attribute values mapping to each bin is equal.

Rfi → binsfk ½ (Zfk + offsetf) (2)

I
′

j = Ij ⊕ (Zfk + offsetf) (3)

where i ∈ AttributeV aluef, cardinality(Zf) ≡ cardinality(binsf) offsetf is a cu-
mulative integer offset within the binary vector Ij for each attribute f where
offsetf+1 = offsetf + numberOfBins(f), → is a many-to-one mapping and ½ a
one-to-one mapping and |oplus sets the appropriate bit in the vector.

If a new record is evaluated with an attribute value that lies beyond those pre-
viously seen, it is placed in an extreme value bin at the appropriate end of the
data range for values either larger than or smaller than those previously pro-
cessed. Once sufficient records have values mapping to either of these bins, we
recalculate all bin boundaries for that attribute to ensure that the set of bins
covers the range of values. We do not show the extreme value bins in the figures
in this paper for simplicity.

The data sets used in our evaluation are both unsupervised (no class attributes)
and comprise solely numeric attributes so we require an unsupervised binning
method (Dougherty, Kohavi and Sahami, 1995; Witten and Frank, 1999). There
are two unsupervised binning methods: equi-width binning and equi-frequency
binning and we use the former. Equi-width binning aims to subdivide the at-
tributes uniformly across the range of each attribute. The range of values is
divided into b bins such that each bin is of equal width and the number of
records E mapping to a particular bin is proportional to the number of records
n and inversely proportional to the number of bins b.

Width(binsfk) =
max(xf)−min(xf)

b
and Ebinsfk

∝
n

b
for all data. (4)

The even widths of the bins prevents distortion of the approximation of the
Squared Euclidean Distances in the CMM compared to, for example, equi-frequency
binning used previously in AURA (Zhou, Austin and Kennedy, 1999) which
aligns the bin boundaries so each bin contains an approximately equal num-
ber of records. This then prevents regions of CMM saturation and evens the
recall speed as all rows have an equivalent number of set bits. However, vari-
able width binning distorts the Euclidean Distance approximation as there are

6 V. Hodge and J. Austin

a larger number of bins where the attribute values are clustered and relatively
few bins representing the outlying values so the spread of attribute values rep-
resented by the bin varies markedly. This is particularly important for normally
distributed attribute values where there will be many bins near the mode value
and very few near the extremes. This distortion of distances is particularly ger-
mane for distance-based machine learning techniques such as k-NN. It lowers the
recall accuracy of the AURA k-NN compared to fixed-width binning when com-
pared to the results from a standard k-NN by up to 3% from an evaluation we
performed previously (Hodge, Weeks & Austin, Unpublished). See (Dougherty,
Kohavi and Sahami, 1995) for an overview of supervised and unsupervised bin-
ning techniques.

We vary the number of bins (b) in our evaluations to pinpoint the ideal config-
uration with sufficiently high recall yet acceptable run-time as more bins slows
the recall as more CMM rows have to be processed. Choosing a suitable value
for b is more difficult for unsupervised data compared to unsupervised data so
a heuristic approach is necessitated, (Witten and Frank, 1999) recommend a
cross-validation approach. We provide heuristics for selecting the number of bins
in sections 5 and 6.

3.1.2. Input Vectors

Once the bins and integer mappings have been determined, we need to map
each record D onto a binary input vector Ij . Each attribute Df maps onto a
consecutive section of bits in the binary vector as in equations 5, 6 where Dfv is
the value of attribute f in record D.

Dfv → binsfk ½ (Zfk + offsetf) (5)

I
′

j = Ij ⊕ (Zfk + offsetf) (6)

Each concatenated binary vector represents a record from the data set and forms
an input Ij to the CMM. The CMM associates the input with a unique output
vector OT

j during training, see equation 1. Each output vector is orthogonal with
a single bit set corresponding to the records position in the data set, the first
record has the first bit set in the output vector, the second and so on.

3.2. Recall

To recall the nearest matches for a query record, we firstly produce an input
vector by quantising the target values for each attribute to identify the bins and
thus CMM rows to activate as in equations 5 and 6 and section 3.1. One prob-
lem with this quantisation is the boundary effect. The bins have hard boundaries
so records lie within one bin only. Hence, for a particular value the distance to
other points in the same bin may be greater than the distance to a point in a
neighbouring bin. For example, if the binning boundaries lie on whole numbers
and the query value is 4.99 then 4.01 will lie in the same bin yet 5.01 will be in
the adjacent bin. However, 5.01 is much closer to 4.99 than 4.01.

To overcome this problem during recall Lees, OKeefe & Austin (Lees, O’Keefe
& Austin, Unpublished) enhanced (Zhou, Austin and Kennedy, 1999) to set the

A Binary Neural k-Nearest Neighbour Technique 7

Fig. 2. The input values (shown as bars) of the CMM rows are set to emulate the parabola
(line) which represents the Euclidean Distance from the central value (shown as large dot on
central bar). The row input values (bar graph) are thus a discrete approximation of Squared
Euclidean Distance.

bit representing the bin for the query record attribute and also set the bits for
the two adjacent bins to retrieve any values that lie just across the bin boundary
and hence may be closer. We improved this previously by exploiting AURA’s
ability to handle integer-valued input vectors (Hodge and Austin, 2003; Weeks
et al., 2003). The technique called Integer Pyramid (or Triangular), uses one
triangular kernel per attribute. Each kernel is superimposed onto the CMM in-
put vector to form a concatenated kernel input vector for recall from the CMM.
During recall, the summed intersection of the kernels contains discrete concen-
tric patterns of equivalent CMM score. These scores represent the quantised City
Block Distance (see equation 7) and are at a maximum where the target values
for all F attributes coincide and decrease with distance from the target values.

CityBlockDist =
∑

all f

|xf − yf | for all f attributes. (7)

The Integer Pyramid achieved 99.49% accuracy and 100% accuracy for the two
data sets used in this paper (Weeks et al., 2003) compared to 17.01% and 63.51%
respectively for the 3-Bits Set. In this paper, we improve the technique further
using a parabolic kernel which is analogous to quantised Squared Euclidean
distance (see equation 8)

SquaredEuclideanDist =
∑

all f

(xf − yf)
2 for all f attributes. (8)

rather than City Block Distance as in figures 2 and 3. It has shown to be more
accurate than Integer Pyramid (Weeks et al., 2003) where the Parabolic kernel
(called SemiCircle in the paper) achieved 99.57% accuracy and 100% accuracy
compared to 99.49% accuracy and 100% accuracy respectively with the Integer
Pyramid (Triangular) kernel for the two data sets used in this paper.

The Parabolic kernel value for each bin (binsfk) in attribute f is given in equa-
tion 9 where the target value’s bin is binsft, max(n) is the maximum number
of bins across all attributes and nf is the number of bins for attribute f . All

kernels have the same maximum value
(

max(n)
2

)2

to ensure no bias across the

attributes. We scale the kernel using αf to spread the kernel across the range

8 V. Hodge and J. Austin

Fig. 3. Figure a) shows the smoothed Parabolic kernel intersection for a two attribute data
with scores divided into ten discrete concentric regions. Figure b) shows the cumulative CMM
column scores (representing the summed kernel intersections) for the AURA k-NN for the same
two attribute data set with 11 bins per attribute and identical parabolas to figure 2 on both
input attributes. The colours (scores) in the squares in b) match the banded colours on a) and
represent the discrete concentric regions of equivalent score.

of each attribute in turn within the CMM input vector. The parabolic kernel is
then superimposed onto the input vector as in equation 10.

Parabolicbinsfk
=

[(

max(n)

2

)2

−(binsft−binsfk)
2αf

]

where αf =
(max(n))2

n2
f

(9)

I
′

j = Ij⊕(Parabolicbinsfk
+offsetf) for all bins (binsfk) in all attributes f (10)

We move the kernels to match the input values unlike RBF (Bishop, 1995) where
the kernels are fixed. The bin containing the query (target) value effectively
receives the highest score with the score decreasing monotonically as the distance
between the query value and a bin increases. If the bin of the target value is
offset, i.e. not the median bin, then the Parabola is offset and truncated at one
end as in attribute2 of figure 4 where the Parabola is centred near the top and
truncated at the top. If all attributes have an equivalent number of bins then the
superimposed Parabolas will be identical. However, if the number of bins varies
across the attributes, then the width of the Parabolas varies accordingly due to
αf in equation 9 spreading the kernel across the attribute width as shown in
figure 4.

3.2.1. CMM Recall

To retrieve the best matching records for a particular query record (represented
by integer-valued input Ik) using Parabolic kernels, the AURA k-NN effectively
calculates the dot product of the input vector Ik and the CMM, computing
a positive integer-valued output vector Ok (the summed output vector) as in
equation 11 and figure 4.

OT
k = Ik • CMM (11)

The summed output Ok is thresholded to produce a binary output vector as
in figure 4. We use the L-max threshold (Austin, 1995). L-Max thresholding

A Binary Neural k-Nearest Neighbour Technique 9

Fig. 4. Diagram of the CMM recall with parabolic kernels. The left-hand column is the
input vector. The dot indicates the target value for each attribute. The integer values in the
column indicate the scores and represent the parabolic kernels superimposed onto each attribute
centred about the target value. The AURA k-NN multiplies the input vector (using the dot
product) by the binary matrix (set (1) and unset (0) matrix elements) and sums each column
to produce the summed output vector which it thresholds to produce the thresholded vector.
The thresholded vector effectively lists the matching records. The summed output vector is
thresholded with value 2 here to retrieve the top 2 matches.

essentially retrieves at least L top matches, i.e., at least L nearest neighbours.
L-max thresholding sets a bit in the thresholded output vector for every location
in the summed output vector that has a value higher than a threshold value.
The threshold value is set to the highest integer value that will retrieve at least
L matches. For k-NN, L is set to the value of k, where k is the number of nearest
neighbours required.

3.2.2. Retrieving the k-Nearest Neighbours

AURA can identify the k-nearest matching records by the bits set in the thresh-
olded output vector. In the work here, bit0 in the output vector corresponds to
the first record in the data, bit1 to the second record and so on. Therefore, if bit0
is set in the thresholded output vector then the first record is a match.

3.3. AURA k-NN versus Standard k-NN

Comparing the conventional k-NN and the AURA-based approach, the nearest
neighbour in the standard k-NN is the record with the lowest Squared Euclidean
Distance. Paradoxically, in the AURA k-NN, the best matching record (nearest
neighbour) is the record with the highest score in the summed output vector.
Also, the CMM-based approach calculates the k-nearest neighbours by traversing
rows in the matrix, it is row-based. The standard k-NN is similar to traversing
columns in the same CMM with floating-point matrix entries rather than the
binary entries of the AURA CMMs so it may be considered column-based. The
nested loop for standard on-line k-NN for a single query record is:

10 V. Hodge and J. Austin

For all records (columns)
For all attributes (rows)

In contrast the loop for the CMM for a single query record is:

For all attributes (rows)
For all records (columns)

4. Evaluation

In this section, we analyse the processing time of the standard k-NN versus the
AURA k-NN, the recall accuracy achieved by AURA and the scalability with
respect to data size of the two techniques.

All techniques use C++ algorithms compiled with GNU g++ v2.95.3 using the
Solaris8 OS and run as command-line applications on a 750MHz SPARC-based
Sun Blade1000 with 4GB RAM. The AURA methodology uses the AURA C++
class library (AURA Web Page, 2003) which provides classes and methods for
CMMs and thresholding.

4.1. Data Sets

We use two data sets to assess the techniques, chosen to contain large num-
bers of records with numeric attributes. The REAL data set contains 200,000
records with 14 continuous-valued attributes 0.0 ≤ x ≤ 1.0 generated using a
Java random number generator. The IBM data set contains 20,000 records with
9 integer-valued attributes where the attribute ranges vary from 0 ≤ x ≤ 4 to
50000 ≤ x ≤ 1, 350, 000 generated using the (IBM Data Generator, 2003). The
first data set analyses the recall accuracy and recall precision of our quantisa-
tion and indexing due to the fine grained differences between attribute values.
The second data set analyses the recall accuracy of our quantisation and binning
compared to the standard Squared Euclidean Distance when the data ranges
vary widely.

The standard k-NN, calculates the entire distance matrix (the distance between
every pair of records) storing each records k nearest neighbours in an ordered
linked list k elements in length. The list holds the indices of the k nearest records
and their respective distances from x, sorted in ascending distance order. It has
computational growth O(n2) with respect to the number of records. The algo-
rithm is:

For each record x
For each record y
If SquaredEuclidDist(x, y) in equation 12 is less then the distance of the last
record in the list (the most distant current neighbour), add y to the list
(in the correct position to maintain the sorted ascending distance order)
and remove the last record from the list.

We use range normalisation in our Squared Euclidean distance calculation to en-
sure that all attributes are in the range 0 to 1 and hence each attribute produces

A Binary Neural k-Nearest Neighbour Technique 11

an equal weight in the Squared Euclidean Distance calculation.

SquaredEuclidDist(x, y) =
∑

all f

(

(xf − yf)

rangef

)2

for all f attributes. (12)

4.2. Timing

We provide two timings for the standard k-NN data structure generation. We
recorded the time to read in the entire data set from a file on disk, generate the k-
NN data structure with n2 distance calculations where each vector is compared to
all other except itself to calculate its nearest neighbours and output the 100 near-
est neighbours to a file on disk. We then implemented a speedup by exploiting the
commutativity of distance (SquaredEuclidDist(x, y) ≡ SquaredEuclidDist(y, x))
and again recorded the training time for this approach. Once we have calculated
the distance between records x and y, (SquaredEuclidDist(x, y) where x < y),
we add y to the nearest neighbour list of x if it is closer than the most distant
neighbour in the current list as previously but we also add x to the nearest
neighbour list of y if it falls in the top k neighbours. Essentially we only need

calculate the half distance matrix where x < y using n2

2 calculations.

The AURA k-NN processing time includes: the time to read in the entire data
set from a file on disk and the time to train the data in to the CMM. For each
record in the data set in turn, the time to convert the record to a CMM input
vector and superimpose the parabolic kernels onto the vectors; the time to sum
and threshold all columns of the CMM; the time to sort the matches into order;
and, the time to output the 100 nearest neighbours to a file on disk.

For the AURA k-NN, we vary the number of bins used: 49,99,149,249,499 and
999 bins. The number of bins alters the specificity of the matching by varying
the number of records with equivalent scores. The number of bins is inversely
proportional to the number of values in each bin from equation 4 and hence the
number of records that will map to each bin per attribute. We aim to identify
the optimum number of bins across various data sets which is a trade off be-
tween retrieval time and granularity. Too many bins will take longer to process
but too few bins will mean too many equivalently scored matches during recall
thus slowing recall as all matches are processed and also lowering accuracy by
reducing the scoring granularity.

Table 1 lists the processing time (training time plus recall time) for the n2 and
n2

2 standard techniques and the AURA k-NN with 49,99,149,249,499 and 999
bins for the REAL (200,000 records with 14 continuous-valued attributes) and
IBM (20,000 records with 9 integer-valued attributes) data sets. We ensured the
process was as similar as possible for all algorithms under investigation to allow
an unbiased comparison.

12 V. Hodge and J. Austin

Standard k-NN AURA k-NN

Dataset n2 n
2

2
49Bins 99Bins 149Bins 249Bins 499Bins 999Bins

REAL 52322 32985 13124 13316 13332 13538 13763 14526

IBM 337 229 85 86 88 90 93 100

Table 1. Table listing the processing time (seconds) for the REAL and IBM data sets for

the standard k-NN (n2 and n
2

2
) and the AURA k-NN with 49,99,149,249,499 and 999 bins

calculating 100 nearest neighbours.

AURA k-NN

Dataset 49Bins 99Bins 149Bins 249Bins 499Bins 999Bins

REAL-100 84.5 84.5 84.3 84.1 83.9 83.8

REAL-50 90.3 91.0 91.3 91.4 91.3 91.3

REAL-25 94.7 96.5 97.2 97.6 97.8 97.9

IBM-100 94.6 96.0 96.6 96.9 97.0 97.1

IBM-50 95.5 97.4 98.3 98.7 98.0 99.1

IBM-25 95.8 98.0 99.1 99.4 99.7 99.8

Table 2. Table listing the recall accuracy (%) for the REAL and IBM data sets for the AURA
k-NN with 49,99,149,249,499 and 999 bins when the first 100 nearest neighbours (REAL-100
and IBM-100) retrieved by the AURA k-NN, the first 50 nearest neighbours (REAL-50 and
IBM-50) and then the first 25 nearest neighbours (REAL-25 and IBM-25) are compared to the
nearest neighbours calculated by the standard k-NN.

4.3. Accuracy

We saved the two nearest neighbour lists produced by the standard k-NN (with
k=100) to a file, one list for REAL and one list for IBM. These lists provide a
benchmark to compare the nearest neighbour list for the AURA technique. We
recalled and listed the 100 nearest neighbours identified by the AURA technique
for the first 20,000 records from the REAL and all 20,000 records from the IBM
data set for the various numbers of bins listed above. The REAL data set is
randomly ordered so the 20,000 records provide a statistically sound evaluation.
From these 20,000 lists of 100 nearest neighbours, we counted the number of
nearest neighbours common to this list and the corresponding standard k-NN
list for that record. We calculated the average number of common records for
each of the 20,000 comparisons to give the average recall percentage for each
of the six configurations of AURA. We repeated this evaluation for the first 50
nearest neighbours and then the first 25 nearest neighbours in the lists.

Table 2 lists the percentage recall accuracy when the nearest neighbour lists
retrieved by the AURA k-NN with 49,99,149,249,499 and 999 bins are compared
with the corresponding list for the standard k-NN using both the REAL and IBM
data sets for 100 nearest neighbours, 50 nearest neighbours and for 25 nearest
neighbours.

A Binary Neural k-Nearest Neighbour Technique 13

Data Set Size

Algorithm 40,000 80,000 120,000 160,000 200,000

149Bins 506 2068 4708 8381 13332

n2 1930 7634 17191 32320 52322

n
2

2
1307 5236 11829 20842 32985

Table 3. Table listing the scalability (processing time (seconds)) for the standard k-NN (n2

and n
2

2
) and the AURA k-NN with 149 bins for the REAL data set with between 40,000 and

200,000 records.

Fig. 5. Diagram showing the processing time for each technique up to 200,000 records and
the trend-line for each of the three plots extrapolated to show the expected growth rate.

4.4. Scalability

Using subsets of the REAL data set with 40K, 80K, 120K, 160K and 200K

records, we noted the processing time for the n2 and n2

2 k-NN techniques and the
AURA k-NN with 149 bins and calculating 100 nearest neighbours. We elected
to use 149 bins for the AURA k-NN as this performed well for both the REAL
and IBM data sets (see tables 1 & 2). We note that in the scalability test we
fix the number of bins to note the increase in processing time. In a real-world
system, the user may elect to increase the number of bins proportionally as the
size of the data set grows to maintain separability of the data values.

Table 3 lists the computational growth of the standard k-NN (n2 and n2

2) versus
the AURA k-NN with 149 bins when the REAL data set size increases from
40,000 to 200,000 records. Figure 5 plots the results from table 3 and extrapo-
lates the trend-line of the plots to allow the reader to view the computational
growth (plot gradient).

14 V. Hodge and J. Austin

Fig. 6. Diagram showing the position (1-100) of the neighbours in the standard k-NN list
which are omitted by the AURA k-NN with 149 bins for the first 1000 records of the IBM
(right plot) and REAL (left plot) data sets.

5. Analysis

For the REAL data set, the AURA k-NN ranges from 4.0 times faster with 49
bins to 3.6 faster with 999 bins compared with n2 standard k-NN and ranges
from 2.5 to 2.3 faster compared with n2

2 standard k-NN. For the IBM data set,
the AURA k-NN ranges from 4.0 times faster with 49 bins to 3.3 faster with
999 bins compared with n2 standard k-NN and ranges from 2.7 to 2.3 faster
compared with n2

2 standard k-NN.

The method in this paper is 1.8 times faster than the AURA k-NN detailed
in (Weeks et al., 2003) which takes 156 seconds to process the IBM data set us-
ing 149 bins and 23249 seconds for the REAL data set with 149 bins compared
to 88 seconds and 13332 seconds respectively for the method in this paper.

The recall accuracy for the AURA k-NN is 97% for the REAL data set and
99% for the IBM data set when the first 25 nearest neighbours are compared. It
is 91% for the REAL and 99% for the IBM when the first 50 nearest neighbours
are compared and 84% for the REAL data set and 97% for the IBM data set
when the 100 nearest neighbours are compared. This compares to 99.59% for
the REAL and 100% for the IBM with the AURA k-NN in (Weeks et al., 2003)
when 100 nearest neighbours are compared. We note that the largest percentage
of the nearest neighbours omitted by the AURA k-NN are towards the end of
the nearest neighbour list (i.e. the 90th-100th nearest neighbours) from figure 6.

Even though we are using the kernels to overcome the bin boundary problem
alluded to in section 3.2, for the continuous-valued REAL data the bin bound-
aries are more of an issue than for the integer valued IBM data set. The integer
values are discrete so the minimum distance between any two integers is 1. As
we increase the number of bins, we are tending towards one integer value per bin
and hence no bin boundary problem. The real-values are accurate to 16 decimal
places so there may be only 0.0000000000000001 between two data points sepa-
rated by a bin boundary but from equation 4 the maximum intra-bin distance is
width(binsfk. Thus, the recall accuracy achieved for the REAL data set is just
below the recall accuracy achieved for the IBM data set for all configurations.
We can see from table 2 that the recall accuracy increase with the number of bins

A Binary Neural k-Nearest Neighbour Technique 15

for REAL-25 but conversely decreases for REAL-100. For REAL-50, it increases
then decreases with respect to the number of bins. The recall accuracy increases
consistently as the number of bins increases for all configurations of the IBM data
set. For a real-valued data set, we posit the rule-of-thumb more bins for fewer
neighbours but conversely fewer bins for more neighbours. For a discrete data
set we posit the rule-of-thumb more bins is better. However, we note that there
is a trade-off between the number of bins and the processing time. Even though
increasing the number of bins for REAL-25 and all IBM configurations increases
the accuracy it also increases the processing time. We would recommend 149
bins as the optimum value for these two data sets with respect to this trade-off
although there is little difference between the recall accuracy between 99 bins
and 999 bins within each configuration. We would recommend a cross-validation
to ensure maximum accuracy if time permits starting with 149 bins.

The AURA k-NN scales better that the standard techniques. It is up to four
times faster than the standard techniques with 200,000 records. Although growth
is still near O(n2) due to the nature of k-NN, the faster initial processing time
means we can process up to approximately 540,000 records in 100,000 seconds
whereas n2 k-NN can only process 270,000 records in 100,000 seconds at which
point the computational growth becomes steep for n2. If we increase the number
of records by 20,000, we increase the processing time for n2 by 20,000 seconds. K-
NN for classification or outlier detection as described in this paper is inherently
O(n2) due to the following loop embedded in the algorithm:

For all n records
Calculate distance to all other (n− 1) records

6. Conclusion

This paper has demonstrated that AURA k-NN has faster recall speed than stan-
dard techniques even when optimisations which effectively halve the number of
calculations are included within the standard technique. AURA scales better
than the standard technique and the difference between the recall times (AURA
time/standard k-NN time) increases as the data size increases.

There is a trade-off with the AURA k-NN of speed versus accuracy. We have pre-
viously post-processed with a standard k-NN (Hodge and Austin, 2003; Weeks
et al., 2003) a set of candidate matches extracted from the CMM (usually of size
10 × k). We effectively use AURA to minimise the search space for the k-NN
and then use the more accurate but slower Euclidean technique to process the
candidate matches. This improves recall accuracy with 100 nearest neighbours
to 99.59% and 100% for the REAL and IBM data sets respectively (Weeks et
al., 2003) to the slight detriment of the recall speed but (Weeks et al., 2003) is
still faster than standard k-NN. Alternatively, if speed is the issue, the kernel ap-
proximation detailed in this paper emulates the distances sufficiently accurately
for 50 nearest neighbours or very accurately with 25 nearest neighbours while
speeding recall by a factor of 1.8 compared to the AURA k-NN in (Weeks et
al., 2003). For large data sets we posit the method detailed in this paper due to
the faster speed preferably with 25 nearest neighbours and recommend a k value
of fewer than 50. From the evaluation here, we would recommend 149 bins as this
provides the best trade-off between recall accuracy versus recall speed for both
data sets. We would recommend a cross-validation to determine the optimum

16 V. Hodge and J. Austin

number of bins if time permits starting with 149 bins. For a real-valued data set,
we posit the rule-of-thumb more bins for fewer neighbours but conversely fewer
bins for more neighbours. For a discrete data set we posit the rule-of-thumb more
bins is better. For smaller data sets we posit the method detailed in (Weeks et
al., 2003) due to the higher accuracy.

The recommended AURA k-NN configurations emulate the standard k-NN by
99%+ with respect to neighbours retrieved. For a classification task, the class
counts of the neighbours retrieved for each query record would be 99%+ similar
for the recommended configurations compared to the standard technique.

For the AURA k-NN technique, there are two user-specified parameters: the num-
ber of neighbours and the number of bins per attribute. Thus the use of AURA
to speed the k-NN has introduced only one additional parameter compared to
standard k-NN: the number of bins per attribute. There are four variables which
effect the execution speed in the AURA k-NN: the number of neighbours, the
number of attributes, the number of records and the number of bins per at-
tribute. The use of AURA to speed the k-NN has introduced only one additional
variable compared to standard k-NN: the number of bins per attribute.

We propose to use the AURA k-NN developed here, within a fraud detection
system and within an outlier detection system where the data sets are large with
approximately 400,000 records and 360 attributes.

Acknowledgements. This work was supported by Engineering & Physical Sciences
Research Council (EPSRC) Grant GR/R55191/01.

References

Aha, D. W. and Bankert, R. B. (1994). Feature Selection for Case-Based Classification of
Cloud Types: An Empirical Comparison. In Proceedings of the AAAI-94 Workshop on
Case-Based Reasoning.

Aleksander, I. and Albrow, R.(1968). Pattern recognition with Adaptive Logic Elements. In
IEE Conference on Pattern Recognition, pages 68–74.

Aleksander, I., Thomas, W. and Bowden, P.(1984). Wisard: A radical step forward in image
recognition. Sensor Review, pages 120–124.

Austin, J. (1995). Distributed associative memories for high speed symbolic reasoning.
In R. Sun and F. Alexandre, editors, IJCAI ’95 Working Notes of Workshop on
Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, pages 87–93,
Montreal, Quebec.

Austin J. (1998). RAM-Based Neural Networks. Progress in Neural Processing: 9. World
Scientific Pub. Co., Singapore.

Bishop, C.M. (1995). Neural networks for pattern recognition. Oxford, Clarendon P.
Bledsoe, W. and Browning, I. (1959). Pattern recognition and Reading by Machine. In Pro-

ceedings of Eastern Joint Computer Conference, pages 225–231.
Dasarathy, B. (editor) (1991). Nearest Neighbor (NN) norms: NN pattern classification tech-

niques. IEEE Computer Society.
Dougherty, J., Kohavi, R. and Sahami, M. (1995) Supervised and Unsupervised Discretization

of Continuous Features.. In Proceedings of 12th International Conference on Machine
Learning, pages 194–202, San Francisco, CA: Morgan Kaufmann.

Hodge, V., Lees, K. and Austin, J. (2003). A High Performance k-NN Approach Using Binary
Neural Networks. Neural Networks, 17(3) pp 441–458, Elsevier Science.

Hodge, V. and Austin, J. (2004). A Survey of Outlier Detection Methodologies. In press,
Artificial Intelligence Review, Kluwer.

Hodge, V., Weeks, M., and Austin, J. (2003). AURA k-Nearest Neighbour Approach. Unpub-
lished.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective computa-
tion abilities. Proc.Nat.Acad.Sci.USA, 79:2554–2558.

A Binary Neural k-Nearest Neighbour Technique 17

IBM Quest Data Mining Project (2003). The Quest
Synthetic Data Generation Code for Classification -
http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html#classSynData,
last accessed 16th October, 2003.

Lees, K., O’Keefe, S. and Austin, J. (2001). Imputation Using a Binary Neural Network.
Unpublished.

Knorr, E. and Ng, R. (1998). Algorithms for Mining Distance-Based Outliers in Large Datasets
. In Proceedings of the VLDB Conference, pages 392–403, New York, USA.

Skalak, D. (1994). Prototype and feature selection by sampling and random mutation hill
climbing algorithms. In Machine Learning: Proceedings of the Eleventh International Con-
ference. pages 293–301.

Turner, A. (2003). Introduction to CMMs and AURA-Based Systems -
http://www.cs.york.ac.uk/arch/NeuralNetworks/binary.html , last accessed 8th August,
2003.

Weeks, M., Hodge, V., O’Keefe, S., Austin, J., and Lees, K. (2003). Improved AURA k-Nearest
Neighbour Approach. In Proceedings of IWANN-2003, International Work-conference on
Artificial and Natural Neural Networks, Mahon, Menorca, Balearic Islands, Spain, June
3-6..

Wettschereck, D. (1994). A study of distance-based machine learning algorithms. PhD thesis,
Department of Computer Science, Oregon State University, Corvallis.

Witten, I. and Frank, E. (1999). Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, October 1999, ISBN 1-55860-552-5.

Zhou, P., Austin, J. and Kennedy, J. (1999). A High Performance k-NN Classifier Using
a Binary Correlation Matrix Memory. In Advances in Neural Information Processing
Systems 11.

Author Biographies

Prof. Jim Austin has the Chair of Neural Computation in the De-
partment of Computer Science, University of York, where he is the
leader of the Advanced Computer Architecture Group. He has exten-
sive expertise in neural networks as well as computer architecture and
vision. Jim Austin has published extensively in this field, including a
book on RAM based neural networks.

Dr. Victoria Hodge received a B.Sc. degree from the University of
York, UK, in 1997 and a Ph.D. from the University of York, in 2001.
She is a member of the Advanced Computer Architecture Group in
the Department of Computer Science, University of York, investigating
the integration of neural networks and information retrieval, focussing
particularly on document retrieval from large corpora and detecting
anomalous records in large datasets.

