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Abstract — Despite the vast wealth of traffic data availablecurrently there is only
limited integration, analysis and utilisation of dda in the transport domain. Yet,
accurate congestion and incident detection is vitdbr traffic network operators to allow
them to mitigate the cost of traffic incidents. Regrrent (cyclical) traffic congestion tends
to be managed using timetabled control measures ¢inrough the use of adaptive traffic
control systems such as SCOOT and SCATS. Howeverrfnon-recurrent congestion
with rapid onset, such as the congestion caused hytraffic incident or traffic equipment
failure, traffic network operators have to quickly detect the problem and then determine
the likely cause before selecting the most approgie action to both manage the traffic
network and mitigate the congestion. This is a cophex task requiring specialist
knowledge where assistance from automated tools Wilelp facilitate the operator tasks.
Automated detection is becoming an increasingly vide option due to the increased use
of traffic sensors in the road network. Thereforethe aim of the FREEFLOW project is
to provide an Intelligent Decision Support (IDS) t@l which is designed to complement
existing fixed-time traffic control systems and adptive systems SCOOT and SCATS.
IDS will use traffic sensor data to rapidly identify traffic problems, recommend
appropriate interventions that worked in the past fbr similar problems and assist the
traffic network operators to pinpoint the cause ofthe problem. Recommendations will
be displayed to the network operator who will usetis knowledge to select the most
appropriate course of action. This paper describeand analyses the components of the
IDS tool used for identifying incidents and faultyequipment.

Index Terms — Intelligent Decision Support, Traffic Management, Traffic State
Estimation Modelling, Pattern Match, Incident Detedion, Equipment Failure Detection

| INTRODUCTION

In the UK, traffic network management generally dives manual monitoring and
intervention implementation to supplement the tabétd or automated traffic control
systems in place. For example, the UK motorway nsgtvis monitored and controlled by the
National Traffic Control Centre (Highways Agency(®) and the road network in local
authorities such as London is monitored and cdetitdly the respective authority’s staff such
as the London Traffic Control Centre (Barton 200)e network operators respond to traffic
problems, determine the likely cause of the problamd then select the most appropriate
action to take to both manage the traffic networid anitigate the congestion. Such
intervention measures are often based on the dprsbexperience of the person handling
the problem.

A large amount of near-real-time and historic itaffata are available from various sensors
and systems at any given Local Authority (LA). Tdie of the FREEFLOW project (Glover
et. al. 2008) is to develop tools and techniquestovert traffic data into intelligence to assist
network managers, operators and also to aid thellireg public. The traffic management
component of the work within FREEFLOW is calledélligent Decision Support (IDS),
which forms the focus of this paper. The full ID®iwill detect traffic problems, identify the
likely cause and recommend suitable interventiorstriigely to mitigate congestion of that
traffic problem. Previous papers analysed incidesietection and intervention



recommendation (Krishnan et. al. 2010b). In thipgsgawe analyse incident detection and
cause identification.

The rest of this paper is organised as followsti&ed| provides an overview of the IDS
functionality. Section IL.LA will present the stasgstimation, 11.B will present the pattern-
matching and 1I.C will present the spatial matchige data and analyses are discussed in
sections Il and IV including the cause-suggestfanctionality within the IDS. This is
followed by discussion and conclusions in sectidrad VI respectively.

I INTELLIGENT DECISION SUPPORT

The objective of the IDS described here is to @dnine if there is a traffic problem using
near-real-time data from traffic sensors and systeand, if there is a problem, (b) identify
the cause. The IDS is a knowledge-based systemusiest information about past traffic
incidents to identify the current incident and segjghe most likely cause. The IDS requires
an historic database of traffic sensor data arffidiacident data for the application area. The
IDS is designed to work online using near-real-titredfic data and large historic datasets.
Hence, IDS needs to be computationally efficient.
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Figure 1. Logical overview of ID€S

The IDS will monitor traffic sensor data to detemeiif the network is congested using traffic
state estimation models developed at Imperial @elleondon. The sensor data (typically
flow and occupancy from Inductive Loop Detectors)monitored at regular intervals (e.g. 5
minutes) over a geographical area of interest. gthee identification algorithm is applied
separately to each ILD (and thus each network lifikle output of the state identification
algorithm is binary: 0 if the link is uncongestatial if the link is congested. If one or more
links are congested, the historic database is egidoir similar congestion events using neural
network based pattern matching tools developedhat University of York. The search
consists of identifying the historical time perioglken the traffic sensor data from the set of
Inductive Loop Detectors (ILDs) is most similartte currently observed data. Similarity is
based on two components: magnitude and spatialasitpi Once the closest matches have
been found, traffic incidents and equipment fasgutieat occurred during similar congestion
events in the historic database are then seardimdmost similar historical case(s) will be
displayed to the network operator along with arpeiséed confidence indicator. A logical
overview of the IDS system is given in Figure 1.



In this paper, the IDS is tested offline using Ictike Loop Detector (ILD) data obtained
from the ASTRID system and incident and equipmaitiife log data obtained from the LTIS
system at Transport for London (TfL). The paperspras the preliminary results using TfL
data and outlines future research avenues for ojgwednt.

A State estimation

A number of attempts to automatically determine ttedfic state are available in the
academic literature. Lao et al. (2004) use Fuzzgid.do classify the traffic state into
uncongested, “crowded” and congested using Fuzgjctdiowever, they used driver inputs
rather than traffic sensor data. Narayanan et28103) also used Fuzzy Logic to classify
traffic using speed and inter-vehicle distancengsiti variables, using fixed thresholds in their
classification method. Threshold based methodsgereerally not transferrable since the
occupancy values reported by each ILD will depemdt®electromagnetic sensitivity, and the
thresholds could be different for different ILDsarly et al. (2003) used Fuzzy Clustering of
traffic sensor data consisting of flow, occupanoyl apot-speed to cluster traffic into four
states representing increasing levels of congesnhe above models, only the method
presented in Jiang et al. (2003) provide a metloodutomatically identify the traffic state
using traffic sensor data. However, the study dueggrovide a comprehensive evaluation of
the proposed method. Moreover, the traffic statesat correspond to known traffic states in
traffic engineering, though this criticism can lmEleessed by reducing the number of clusters
in the proposed method. However, it is not cledinéf modified method will correctly classify
traffic into congested and uncongested states.

On the other hand, it is rather straightforwarditually classify traffic into congested and
uncongested states using a scatter-plot of flowcamedpancy values. Occupancy increases as
the flow increases during the uncongested regimd, @ccupancy decreases as the flow
increases during the congested state; see Figufer 2llustration. However, it is not
straightforward to develop an algorithm that caffiedentiate between the two traffic states.
Direct application of a clustering algorithm, suhthe k-means clustering (MacQueen 1967)
method, leads to a number of congested data pbiitsy identified as uncongested. To
address this problem, a two-step clustering apross developed (Han et. al. 2009).

Step 1 clusters the data points into two clustensghly representing congested and
uncongested regimes using k-means clustering. T¢tande metric used is cosine, which
uses the difference between the angles made byiffevent data points with the origin to
determine cluster memberships. The use of the eafistance metric takes advantage of the
fact that the flow vs. occupancy curve is linearttie congested regime, and most of the
uncongested data points should be grouped in the stuster. However, due to the range of
occupancy values in the congested regime, soméefcongested data points may be
classified into the first cluster of uncongestethdmints.
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Figure 2: An example of the flow-occupancy plot ofeal ILD data



Step 2 fits a linear regression model on the datatp in the uncongested cluster identified
in the first step. All the data points identifiesl @utliers by the regression model are moved to
the second cluster, representing the congestesl stat

B Pattern Matching

The IDS pattern-matching module identifies timeige#s when the traffic state is most
similar to the current observation. As with prexgosersions of the pattern matcher (Krishnan
et. al. 2010b), we consider both magnitude andiapsimilarity. The state is initially
represented by a time-series of ILD readings aed thcorporates spatial matching. The first
stage of the pattern-matcher is a k-Nearest NeighfioNN) technique implemented using
the Advanced Uncertain Reasoning Architecture (A)R&Ehnology (Hodge & Austin 2005)
from the computer science discipline. Given theenirvectorX,, and a historical dataset of
vectors {X}, k-NN identifies thek nearest neighbours & in {X} using a distance metric.
The commonly used distance metrics in k-NN are Ehelidean distance, unit map,
Mahalanobis distance, city block distance and Mimild distance. However, such metrics
are insensitive to the position of the variable} Within the vectorX,, they calculate the
magnitude of similarity but not the location of dismity and hence the location of congestion
within the set of ILDs (Krishnan et. al. 2010). Tbencept of Centre of Mass (CM) is thus
introduced in the second stage of pattern matdiragldress this problem.

The first step in pattern matching is to produgeresentations of the historical data and
generate a fast-access data repository. For erafigoltwo ILDs where ILD has a vehicle
count reading of 1 and occupancy reading of 5.0laDBd has vehicle count reading of 8 and
occupancy readings of 45.0 then the historicaloret is:

Xn={1, 5.0, 8, 45.0}

The AURA technology relies on binary searching éomputational efficiency. The data
vector Xy, is converted to a binary stringy)(using a process called quantisation (Hodge &
Austin 2005). The quantisation process involvesnilaf the range and precision of each
variable in the data vectot,, resulting in separate bins for different rangéshe variables
within I,. For example, for an integer-valued variable sashvehicle count per 5 minutes
with range 0-9 and 5 bins then each bin would heidth 2: bin 0 {0,1}, bin 1 {2,3} ...bin 4
{8,9}. For a real-valued variable such as occuganith range [0.0-100.0] and 5 bins then
each bin would have width 20: bin 0 [0.0, 20.0y ki [20.0, 40.0) ...bin 4 [80.0, 100.0].
Thus the set of bin mappings & are:

Bins(X,) ={0, 0, 4, 2}

In the pattern matcher, each bin index maps toarbirepresentation so for five bins, bin 0
= 00001, bin 1 = 00010, bin 2 = 00100 etc. Thus,dims corresponding to the values<nin
are marked 1 while the other bins are marked 0. Binary representations for all the
variables in the data vector are concatenatedeateithe binary string, which is a learning
vector to allow the particular data vector to lwestl and retrieved.

I,=00001 00001 10000 00100

The storage structure consisting of binary striiogsall the observations in the data s&} {
is called a Correlation Matrix Memory (CMM) (Austet. al. 1998). CMMs are the building
blocks for AURA systems. AURA uses binary input dridary output vectors to train data
into the CMM. Training is a one-pass process witle ¢raining step for each binary input
string, i.e., each vector in the data set so tngié rapid. Each binary stririgis associated
with a unique identifier vectd®d, which has a single bit set to index a unique columthe
CMM as given in Equation 1. This column thus inglekhe binary strin,.

CMM :[a,, w 1,xO; where LCis the logical OR operator (1)
During retrieval, the CMM is searched to find thesb matches.For each new query

observationX,, the retrieval vectoR, is created using a set of parabolic kernels, wiik
kernel for each variabl& in X,. The kernels may vary across variables accordinthée



number of bins assigned to that variable. In piaiger all variables use an equivalent kernel.
The kernel density is estimated using Equation 2.
(max())*

2
Kernel (x,) = W ma;(b)ﬂ - (|bin(xg) —bin(x") )’
Xn

Where,max(b) is the maximum number of bins across all varigbfgn(x,”) — bin(x,")| is
the number of bins separating the bin mapped tthbyvariable value for the query vector
(%% from the bin mapped to by the variable valuetfe stored historical vectok,(), and
b(x,) is the total number of bins for variable

)2 a(x,) |wherea(x,) =

(2)
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Figure 3: lllustrating the application of kernelsto CMM to find the k-nearest neighbours using
time-series vectors.

The columns of the matrix are summed accordindp¢okernel weight on the rows indexed
by the query retrieval vect®,. The CMM produces a summed output ve&pras shown in
Equation 3 and figure 3.

Sq =Y Ry*CMM ®3)

In AURA, the summed output vect§y is thresholded using-Max thresholding to produce
a binary thresholded vectdy. L-Max thresholding is used in the AURA k-NN as it retde
the topL matches (Hodge & Austin 2005). After thresholdifig.effectively lists the toph
matching columns from the CMM thus identifying ttog L matches. The AURA k-NN can
perform up to four times faster than the traditiokdNN (Hodge & Austin 2005) thus
allowing large data sets to be searchedHhek nearest neighbours.

C Spatial Similarity

By incorporating the centres of mass (CM), the ksirtyy between data vectors is calculated
not only based on the distance but also based esithilarity of the spatial distribution of
data values. Four different CM metrics were tesédang with original AURA matching, to
find the best method for identifying similar incite. The equation for calculating the CM is
given in Equation 4.



CM = m (4)

2m
Wherem is the mass andl is the distance of objecfrom the origin.

However, the notion of distance and the mass inctirgext of binary input vectors are
different for the four CM metrics. The CMM does msbdre the original data values but stores
a quantised (binary) representation of each dattore As the kernels used in the AURA k-
NN utilise the quantisation bins to assign simflarihe proposed CM calculations also utilise
the bins in an analogous manner for consistencysamglicity. The CM metrics used are
given below wherem, is the mass for variablg, r, is the distance for variabbg, and

‘bin(x,?)—bino‘ is the number of bins between piand the bin representing the value for
variablex, of the query vector.

e CM-I: m, =| bin(x?) - bin, | andr,is calculated using the geo-coordinates

(Easting and Northing) of the ILDs.
e CM-Il: m, :(max(b))2—Qbin(x,‘})—bino‘a(xn))zand I :‘ bin(x%) - bin,

e CM-IIl: m, =(max())? —qbin(xﬁ)—bino‘a(xn))z andr, = the ILD reading

e CM-IV: m, = the ILD reading and, is calculated using the geo-coordinates
(Easting and Northing) of the ILDs.

[l TRAFFIC SENSOR DATA FROM LONDON

Two datasets from Transport for London (TfL) weised to analyse IDS for recall and
precision. SCOOT ILD data, consisting of flow andcapancy aggregated at 15-minute



intervals, was obtained from the ASTRID systemadidition, traffic incidents and equipment
failures were obtained from the LTIS system as Bath datasets covered a 12-month period
from 1% Apr. 2008 to 31 Mar. 2009. The analyses use the area around Hgde Gorner
(HPC) comprising data from 32 ILDs in the area shawFigure [4].

The objective of the analyses is to determine &f DS can identify similar incidents and
equipment failures in the historic data. Hencegdhserious events in HPC area identified in
the TfL's LTIS system (Barton 2004) were used falidation of the IDS pattern-matcher.

. Equipment fault on %4May 2008
. Spillage on 18 May 2008
. Broken down vehicle'8June 2008

IV RESULTS

The objective of the test is to determine how aamly the IDS method can identify time
periods with similar congestion patterns. Given tinge period within the duration of the
event as input, it is expected that IDS should tifierother time periods during the same
event as time periods with similar congestion pateMoreover, IDS should identify other
time periods when the congestion pattern was sinmiiathis section, the results consisting of
top 5 matches and a qualitative analysis of thelteare presented.

The ILDs are grouped together to form locations nvdetermining the spatial accuracy of
the match. For example, a given location on thd roay have ILDs N01/381a and N01/381b
on two separate lanes. Such ILDs are grouped tegattform locations. The spatial accuracy
of the match is determined based on the numbemofested locations identified by the
match.

Tables [1-3] show match statistics for the threeidents when the top 5 matches are
retrieved by the various pattern match configuraioA “good” algorithm should identify
time periods during the congestion build-up of &vent or time periods during the duration
of the incident. (The incident will be marked cledronly after the congestion due to the
event dissipates). False positive (FP) values e délls indicate the number of locations
during the matched time period that are congestedchbt congested during the input time
period. A higher value of FP means that the idedtiimatches are congested at different
locations. False negative (FN) values indicatenilvaber of sensors that are congested during
the input time period, but not during the matchetetperiod. Table 4 shows aggregate results
of the methods for all the incidents.

Matche: AURA CM-I CM-II CM-IlI CM-IV
FP FN FP FN FP FN FP FN FP FN
1 2 0 1 0 2 0 2 3 2 0
2 2 0 2 1 2 1 1 2 2 1
3 1 1 2 1 3 0 1 2 2 1
4 1 0 2 1 2 1 2 2 2 2
5 2 1 1 0 1 0 0 2 1 2
Total 8 2 8 3 10 2 6 11 9 6
Table 1: Results for equipment failure event on 124 May 2008
Matche! AURA CM-| CM-II CM-Ill CM-IV
FP FN FP FN FP FN FP FN FP FN
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 1 1 2 2 1
3 1 0 0 1 1 0 0 1 0 1
4 0 1 0 1 0 1 0 1 1 1
5 0 1 2 1 0 1 0 1 0 1




| Total 1 ]2 J2 J4 |1 3 |11 [5 |3 [ 4 |
Table 2: Results for spillage event on {5May 2008

Matches AURA CM-I CM-II CM-II CM-IV

FP FN FP FN FP FN FP FN FP FN
1 0 4 0 2 0 2 1 1 0 3
2 0 3 0 2 0 1 1 1 0 2
3 0 2 0 3 0 3 0 5 0 4
4 1 1 0 2 0 3 1 1 0 2
5 0 2 1 1 1 1 0 4 0 3
Total 1 12 1 10 1 10 3 12 0 14

Table 3: Results for broken down vehicle event 08" June 2008

Matches AURA CM-I| CM-II CM-IlI CM-IV

FP FN FP FN FP FN FP FN FP FN
Total 10 16 11 17 12 15 10 28 12 24

Table 4: Overall performance comparison of patteramatching techniques

V  DISCUSSION

FN indicates a more serious (from FREEFLOW perspecproblem of missed links in the
match than FP. For example, if all the sensors d@natcongested during the current time
period (input vector) and a few extra locations @egested during the matched time period
(FP), the recommended intervention is still presbignavalid as it is capable of easing
congestion on the matched links. On the other hé&sdme of the sensors that are currently
congested are not congested in the matched timedp€FN), potentially a different
intervention should be used. Hence, a lower vafue\bis more important than a lower value
of FP.

Keeping these factors in mind, AURA, CM-I1 and Cpirform the best. The use of spatial
distance metrics actually makes the FP rate sjightirse than simple AURA but CM-Il has
the lowest FN rate which is the most important measThe result with respect to FP rate
was somewhat unexpected. An explanation may betteatlatively large number of sensors
in the feature vector may obscure the spatial paté congestion. Selectively choosing the
sensors for matching may solve this problem. Howepeeselecting ILDs is not simple as
different ILDs are required to identify differenbrigestion topologies. We would need to
know the congestion topology to preselect the IbDsthe task is to identify (and recognise)
congestion which is a circular cause and conse@uddence, it is important that all the
sensors in the area of interest are monitored simqpetential problem could occur in any one
of the links.

A The Use of Pattern-Matching In IDS

The matched time periods with similar congestiotignas form the input to the rest of the
IDS algorithm. IDS may suggest potential causethefincident by correlating the matched
time periods with similar congestion patterns andidents and equipment faults. This
information may be displayed to the local authostaff and will provide a number of
potential reasons behind the congestion event.

VI CONCLUSION

Two key components of the traffic management modelesloped within FREEFLOW are
state estimation and pattern-matching. The spa@uracy of matches using pattern-
matching is critical to the accuracy of the prombsgethod. This paper describes different
configurations of the AURA pattern-matcher and @dsthem against real ILD data from
around Hyde Park Corner in central London. The wes$ carried out using data when



incidents were known to be present, and the acgwhthe pattern matcher was determined
based on the number of congested locations idedtifiy the matcher. It was recommended
that the AURA k-NN and AURA k-NN in conjunction witboth the CM-1 and CM-II
distance metric developed in the FREEFLOW projéciud be used for obtaining accurate
location based congestion matches. The use of thgubof the pattern-matcher to index
historical cases and generate information for dispb the network operator within the IDS
traffic management module was also described ip#per.
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