ResearchGate

See discussions, stats, and author profiles for this publication at:

An evaluation of standard retrieval algorithms
and a weightless neural approach

Conference Paper - February 2000

DOI: 10.1109/IJCNN.2000.861533 - Source: IEEE Xplore

CITATIONS READS
3 75

2 authors, including:

2
% The University of York

59 PUBLICATIONS 2,223 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project FREEFLOW

Project YouShare

All content following this page was uploaded by on 09 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3857929_An_evaluation_of_standard_retrieval_algorithms_and_a_weightless_neural_approach?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3857929_An_evaluation_of_standard_retrieval_algorithms_and_a_weightless_neural_approach?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FREEFLOW?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/YouShare?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_York?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Evaluation of Standard Retrieval Algorithms and a Weightless
Neural Approach

Victoria J. Hodge Jim Austin
Dept. of Computer Science, Dept. of Computer Science,
University of York, UK University of York, UK
vicky@cs.york.ac.uk austin@cs.york.ac.uk
Abstract

Many computational processes require efficient algorithms, those that both store and retrieve data
efficiently and rapidly. In this paper we evaluate a selection of data structures for storage efficiency,
retrieval speed and partial matching capabilities using a large information retrieval dataset. We
evaluate standard data structures, for example inverted file lists and hash tables but also a novel
binary neural network that incorporates superimposed coding, associative matching and row-based
retrieval. We identify the strengths and weaknesses of the approaches. The novel neural network
approach is superior with respect to training speed and partial match retrieval time.

Many computational implementations require algorithms that are storage efficient, may be rapidly trained
with data and allow fast retrieval of selected data. Information retrieval requires the storage of massive
sets of word to document associations to allow the documents matching query terms to be retrieved. This
often requires partial matching of M of N query terms. Many methodologies have been posited for storing
these associations, see for example, [Knu68]: including inverted file lists, hash tables, document vectors
and superimposed coding techniques. We only compare ‘perfect’ techniques; those that preserve all word
to document associations. We analyse an inverted file list (a version of which is used in the Google search
engine [BP98]), against a hash table and against a binary associative memory [Aus95]. In all cases we
evaluate the algorithms in their standard form without any sophisticated improvements to provide a valid
comparison of the approaches. We evaluate the algorithms for storage use; training speed! and partial
matching capabilities.

We utilise the Reuters 21578 Newswire text corpus for the investigations. The dataset is large with
on average 100 words per document. This allows the extraction of a large set of word-to-document associ-
ations for a thorough evaluation of the algorithms. We cleaned the text corpus and extracted 9491 words
from the 18249 documents left giving 1230893 word-to-document associations. We analyse the three data
structures for storage efficiency, training speed and partial match retrievals. We assume that all words
searched are present; we do not consider error cases in this paper, as we are evaluating speed and capacity.

1 Data structures

1.1 Inverted File List (IFL)

For the inverted file list we use an array of words, sorted alphabetically and linked to an array of lists.
This data structure minimises storage and provides flexibility. The array of words provides an index into

Itraining time and thus speed is implementation dependent. To minimise variance, we preserve as much similarity between
the data structures as possible particularly during training - see section 1 for details

g o o -
e[|—] Hr e R
s | — | 0o = e
g |—| HrH e

 E— — [] [] [) L]
8 L] L] L] L] [] L] L] L]
g . . ° ° ° . ° °
5% * |° *]
%‘ —]] =
gl g I e o S N
<£(‘ o T Hash array of words

Array of pointersto lists indexing into an array of pointersto lists

Figure 1: Diagram showing the IFL and hash data structures. We implemented two linked data substruc-
tures to preserve similarity between the data structures. The speed of training and retrieval are dependent
on implementation. By maintaining similarity, we enable comparisons between the two data structures.

the array of lists (see figure 1). A word is passed to an indexing function (binary search through the
alphabetically sorted array of words) that returns the position of the word and its document list in the
arrays. The lists are only as long as the number of documents associated to minimise storage but yet can
easily be extended for new associations. The retrieval of the index into the array of lists using binary
search is O(log n) so the data structure is a trade-off between minimising storage but providing slower
access, the hash table below is (1) for access in comparison.

The IFL and hash table achieve partial matching through the addition of an array of documents and
counters. In this paper the documents were identified by integer IDs so we exploit this to provide an index
into an array of counters. The counter stored at position ID is the number of times that document ID has
been retrieved. A single pass through the array, once retrieval is complete, will retrieve the documents
that have matched the required number of words (M of N).

1.2 Hash Table

The hash table is used to maximise the retrieval speed. An array of words is linked to an array of pointers
that point to linked lists (see figure 1) to minimise storage and maintain flexibility while a hash function
generates the indices. The complexity of an average hash operation is constant time Q(1). We use closed
hashing where no more than one item is stored at each hash location. If this array location is empty, the
new item can be inserted. However, if this location is already occupied, an alternative strategy must be
used. The worst-case upper bound for the hash operation complexity is thus O(n). The price for such
a speed up in access time is memory usage. The hash table used in the paper degrades as the table fills
and thus must be kept less than 50% occupied otherwise there are too many collisions. For efficiency
reasons, we must minimise collisions by using an initial hash function that does not favour any particular
set of locations. We empirically evaluated various hash functions for strings (char * word) and found that
Horner’s Rule with factor 131 (adapted from Sedgewick [Sed92]) produced the least number of collisions.

for (sum=0; *word; word++) {
sum = (sum*131) + *word; }
return (sum % hashTableSize); }

For double hashing, 2(n?) probe sequences are used rather than Q(n) for linear or quadratic probing
(see [CLR90]) improving performance as more possible locations are examined. We selected a prime
number size (20023) to ensure that the modulo function (%) is not followed by an integer with small
divisors else the hash algorithm will be pre-disposed to clustering [Amm98]. Also, if hashTableSize and

hashTableSize — 2 are not relative primes at the least, they will have a greatest common divisor (gcd)
and only ﬁ of the table will be probed (see [CLR90]) for vacancies both 20023 and 20021 are prime.

Again for partial match we employ the additional document data structure used for the IFL.

1.3 Advanced Uncertain Reasoning Architecture (AURA)

AURA [Aus95] is a collection of techniques that may be implemented in a modular fashion and utilises
Correlation Matrix Memories (CMMs, [Aus95]) to map inputs to outputs (see fig ??) through a learning
rule, similar to a hash function. AURA does not suffer from the lengthy training problem of other neural
networks; training is a one shot (single epoch) process and AURA is able to match only partial inputs.
Storage is efficient as patterns are stored distributively and new inputs do not require additional memory
allocation, they are overlaid with existing trained patterns [TA]. The AURA modular neural network
uses binary weights and inputs. Learning is supervised as the outputs are known and guide the learning
process. The words form the inputs and the documents the class patterns (outputs). The words, are
initially translated to binary patterns by the lexical token converter (the neural network requires binary
data inputs). The binary pattern for each token has a preset constant number of bits set to 1 in a fixed-
length binary array. The documents form the class patterns, again the document ID is translated by the
lexical token converter to a binary bit vector with a predefined number of bits set. We use orthogonal
vectors with 1 bit set to prevent false positive matches during retrieval (see [Knu68]).

1.3.1 Training the network

Class Pattern Class Pattern Class Pattern

01000000 00010000 00000100

Jeococococoro
locoocoroooo

Inputs to be trained into the network

Figure 2: Diagram showing three stages of network training

The diagram (figure 2) shows a CMM after 1,2 and 3 patterns have been trained. The CMM is set to one
where an input and class pattern (row and column respectively) are both set (see figure 2). The training
process is 2(n) as there is one association trained into the CMM per word-document pair.

1.3.2 Recalling from the network

This process is essentially similar to the training process except only the word pattern is input. The
columns are summed and the activation of the network thresholded using the Willshaw threshold (see
[Aus95]) to produce an output vector (see figure 3). The vector retrieved represents the matching docu-
ment for the input word presented to the network during recall.

If we wish to retrieve multiple word matches, rather than serially matching the bit vectors, AURA repli-
cates parallel matching. The bit vectors matching the required word inputs are superimposed, forming
a single vector (see figure 3). Thus multiple word matching is (1) with respect to input epochs. The
previous two data structures are Q(n). For partial match, AURA exploits the fact that all words in the
IR system have a definite mapping from the words to the documents. If only M of N words (M < N)

cooroooo
©coooor oo
©cooroooo
cocoror oo

Activation - 1 input bit set: threshold at 1 Activation - 2 input bits set: threshold at 2
Output pattern after thresholding Output pattern after thresholding

Figure 3: Diagram showing system recall for single and superimposed inputs. The single input pattern
has 1 bit set so the CMM is thresholded at 1. The superimposed input has 2 bits set so the Willshaw
threshold is set to 2.

in the input must match then the Willshaw threshold is set at M - B where B is the number of bits set
in each input vector. The outputs from multiple word retrievals will be superimposed in the output vector.

The outputs for single and multiple word matches must be identified. A list of valid outputs is held
in a content-addressable memory and matched in the lexical token converter - binary to data. The time
for this process is proportional to the number of bits set in the output vector ©(bits set), there will be
one matching word per bit set for orthogonal (single bit set) vectors.

1.4 Analyses

All analyses were performed on a SGI Origin 2000 with the following specifications:

32 X 180 MHZ TP27 Processors (MIPS R10000).

Main memory size: 8192 Mbytes.

All data structures were compiled with the CC compiler using -Ofast (fast binaries) and -64 (64 bit). The
algorithms were run with the command runon x <algorithm> and one process from each data structure
was run in parallel to minimise variance.

The following analyses were performed on the data structures:
1. The memory usage for each algorithm was calculated using the C/C++ sizeof() utility.

2. The training times were calculated using the C/C++ clock() function. The training time was the
time to read in the list of words, input them to the data structure and read in each of the word-to-
document associations adding the appropriate links in the data structures (document IDs are added
to the front of the lists in the IFL and hash table for speed). For the CMM the list of documents
was also read into the data-to-binary converter prior to adding the associations.

3. Partial Match. Each data structure was trained a priori. The list of the most frequent words; those
that occur in at least 20% of the documents was read and the matching documents for each word
retrieved in turn. For the IFL and hash table the appropriate document counter was incremented
as each document was returned. After all words had been matched, the document list was traversed
to find all documents matching > M words. For the CMM, the binary patterns for the words
were retrieved, superimposed and input. The output was thresholded at the appropriate value and
the matching documents retrieved from the binary-to-data lexical token converter. The partial
match retrieves the documents that match more than 10, 11, ... and more than 37 of the most
frequently occurring words to test partial matching. There are 38 words in the word set and the
18249 documents match between 0 and 38 words. For all data structures the output to the file is
identical.

1.5 Results
1.5.1 Memory Usage

| | IFL | Hash Table | CMM |
| Total Memory Usage in bytes | 10945622 | 11556478 | 14200718 |

1.5.2 Training Times

| | IFL | Hash Table | CMM |
| Average Training time for 20 training epochs in secs | 1965.365 | 1570.48 | 98.31 |

1.5.3 Partial Match

Figure 4 shows a graph of the speedup of the average retrieval times (averaged over 20 retrievals) for each
data structure. The data structure were timed for retrieving the documents that match more than 10 to
more than 37 of the most frequently occurring words in the text corpus. The graph shows the time for
each data structure / the time for the CMM.

Speedup of CMM vs other algorithms
25 LN S B B S S s S e

IFL ——
Hash Array -----

Speedup - time for data structure / time for CMM

.

e
s
S

010 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 Z‘O 2‘1 2‘2 2‘3 2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 C;O 3‘1 3‘2 3‘3 3‘4 3‘5 1;6 37
More than X matching words

Figure 4: Graph of the speedup of the CMM versus the other data structures when retrieving highly

saturated words. Speedup = time for data structure / time for CMM retrieval.

2 Analysis

2.1 Memory Usage

The memory totals for the 3 algorithms are in ascending order: IFL, hash table and CMM. As stated
previously, the inverted file list will use the least memory but, as can be seen from the subsequent analyses,
is slower. The CMM memory usage is 1.3 times higher than the inverted file list. However, none of the
memory usage statistics is significantly larger than the others.

2.2 Training Times

There is a significant difference between the training times. The IFL is the slowest to train as expected.
Each word search requires a binary search through the entire array O(log n) before the document may be
appended to the word’s list. The training times for the hash table is quicker as we would expect. Training
finds the hash location for each word (2(1)) and appends the document to the corresponding document

list. By far the quickest to train is the CMM. The CMM does not require the lengthy word search. Even
the hash function — O(n) if there are collisions. The CMM simply associates and recalls the word and
document, in one step.

2.3 Partial Match

The IFL is slower than the hash tables in all instances of partial matching due to the binary search
O(log n) through the array to locate the words prior to finding the associated documents. The hash table
is faster than the IFL in all instances. The CMM is slower than the hash table for low frequency partial
match but for higher frequency partial match the CMM excels. The time curve for the CMM starts above
the hash table but falls below for ‘more than 13’. The time difference between the CMM and the has table
will level off and eventually fall as the y-axis forms a lower bound asymptote to the CMM curve and the
retrieval speed of the hash table will continue to fall thus slowly approaching the CMM curve. However,
the hash table will only approach the CMM slowly and may never reach it so the CMM is preferable for
partial matching.

3 Conclusion

For partial matching the CMM performs best. Although the memory usage is higher (but not significantly
so) the retrieval speed is superior; the greater the number of words to be matched at each retrieval, the
more superior the CMM is. We recommend the CMM for word to document association storage and
retrieval as the approach is superior with respect to training time and retrieval time with only a slightly
higher memory usage. The CMM enables single epoch training, requiring only one pass through the list
of word-document associations unlike other neural networks that require multiple epochs to enable the
network to settle. The superimposition of the input vectors allows one-shot multiple word retrieval and
partial match - emulating parallel retrieval. We also note that more word-document associations could be
added to the existing CMM without significantly increasing the memory usage due to the superimposed
storage. For the other data structures evaluated, additional associations would increase the memory use
of the list array with one additional list node for each additional document association.

References

[Amm98] L. Ammeraal. Algorithms and Data Structures in C++. John Wiley & Sons, Chichester,
England, 1998.

[Aus95] Jim Austin. Distributed associative memories for high speed symbolic reasoning. In R. Sun
and F. Alexandre, editors, IJCAI 95 Working Notes of Workshop on Connectionist-Symbolic
Integration: From Unified to Hybrid Approaches, pages 87-93, Montreal, Quebec, August 1995.

[BP98] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. In 7th International World Wide Web Conference, 1998.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[Knu68] D. E. Knuth. The Art of Computer Programming, volume 3. 1968.
[Sed92] R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.

[TA] Mick Turner and Jim Austin. Matching Performance of Binary Correlation Matrix Memories.

https://www.researchgate.net/publication/3857929

