
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/3857929

An	evaluation	of	standard	retrieval	algorithms
and	a	weightless	neural	approach

Conference	Paper	·	February	2000

DOI:	10.1109/IJCNN.2000.861533	·	Source:	IEEE	Xplore

CITATIONS

3

READS

75

2	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

FREEFLOW	View	project

YouShare	View	project

Victoria	Hodge

The	University	of	York

59	PUBLICATIONS			2,223	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Victoria	Hodge	on	09	September	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/3857929_An_evaluation_of_standard_retrieval_algorithms_and_a_weightless_neural_approach?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3857929_An_evaluation_of_standard_retrieval_algorithms_and_a_weightless_neural_approach?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FREEFLOW?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/YouShare?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_York?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Victoria_Hodge?enrichId=rgreq-7ea5a739d2177005c7c618b53d4c1d3d-XXX&enrichSource=Y292ZXJQYWdlOzM4NTc5Mjk7QVM6OTk4MTc1ODE3MTEzNjFAMTQwMDgwOTc3NTkxMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


An Evaluation of Standard Retrieval Algorithms and a WeightlessNeural ApproachVictoria J. HodgeDept. of Computer Science,University of York, UKvicky@cs.york.ac.uk Jim AustinDept. of Computer Science,University of York, UKaustin@cs.york.ac.ukAbstractMany computational processes require e�cient algorithms, those that both store and retrieve datae�ciently and rapidly. In this paper we evaluate a selection of data structures for storage e�ciency,retrieval speed and partial matching capabilities using a large information retrieval dataset. Weevaluate standard data structures, for example inverted �le lists and hash tables but also a novelbinary neural network that incorporates superimposed coding, associative matching and row-basedretrieval. We identify the strengths and weaknesses of the approaches. The novel neural networkapproach is superior with respect to training speed and partial match retrieval time.Many computational implementations require algorithms that are storage e�cient, may be rapidly trainedwith data and allow fast retrieval of selected data. Information retrieval requires the storage of massivesets of word to document associations to allow the documents matching query terms to be retrieved. Thisoften requires partial matching ofM of N query terms. Many methodologies have been posited for storingthese associations, see for example, [Knu68]: including inverted �le lists, hash tables, document vectorsand superimposed coding techniques. We only compare `perfect' techniques; those that preserve all wordto document associations. We analyse an inverted �le list (a version of which is used in the Google searchengine [BP98]), against a hash table and against a binary associative memory [Aus95]. In all cases weevaluate the algorithms in their standard form without any sophisticated improvements to provide a validcomparison of the approaches. We evaluate the algorithms for storage use; training speed1 and partialmatching capabilities.We utilise the Reuters 21578 Newswire text corpus for the investigations. The dataset is large withon average 100 words per document. This allows the extraction of a large set of word-to-document associ-ations for a thorough evaluation of the algorithms. We cleaned the text corpus and extracted 9491 wordsfrom the 18249 documents left giving 1230893 word-to-document associations. We analyse the three datastructures for storage e�ciency, training speed and partial match retrievals. We assume that all wordssearched are present; we do not consider error cases in this paper, as we are evaluating speed and capacity.1 Data structures1.1 Inverted File List (IFL)For the inverted �le list we use an array of words, sorted alphabetically and linked to an array of lists.This data structure minimises storage and provides 
exibility. The array of words provides an index into1training time and thus speed is implementation dependent. To minimise variance, we preserve as much similarity betweenthe data structures as possible particularly during training - see section 1 for details



indexing into an array of pointers to lists

Hash array of words
Array of pointers to lists

A
lp

ha
be

tic
al

ly
 o

rd
er

ed
 a

rr
ay

 o
f 

w
or

ds

Figure 1: Diagram showing the IFL and hash data structures. We implemented two linked data substruc-tures to preserve similarity between the data structures. The speed of training and retrieval are dependenton implementation. By maintaining similarity, we enable comparisons between the two data structures.the array of lists (see �gure 1). A word is passed to an indexing function (binary search through thealphabetically sorted array of words) that returns the position of the word and its document list in thearrays. The lists are only as long as the number of documents associated to minimise storage but yet caneasily be extended for new associations. The retrieval of the index into the array of lists using binarysearch is O(log n) so the data structure is a trade-o� between minimising storage but providing sloweraccess, the hash table below is 
(1) for access in comparison.The IFL and hash table achieve partial matching through the addition of an array of documents andcounters. In this paper the documents were identi�ed by integer IDs so we exploit this to provide an indexinto an array of counters. The counter stored at position ID is the number of times that document ID hasbeen retrieved. A single pass through the array, once retrieval is complete, will retrieve the documentsthat have matched the required number of words (M of N).1.2 Hash TableThe hash table is used to maximise the retrieval speed. An array of words is linked to an array of pointersthat point to linked lists (see �gure 1) to minimise storage and maintain 
exibility while a hash functiongenerates the indices. The complexity of an average hash operation is constant time 
(1). We use closedhashing where no more than one item is stored at each hash location. If this array location is empty, thenew item can be inserted. However, if this location is already occupied, an alternative strategy must beused. The worst-case upper bound for the hash operation complexity is thus O(n). The price for sucha speed up in access time is memory usage. The hash table used in the paper degrades as the table �llsand thus must be kept less than 50% occupied otherwise there are too many collisions. For e�ciencyreasons, we must minimise collisions by using an initial hash function that does not favour any particularset of locations. We empirically evaluated various hash functions for strings (char * word) and found thatHorner's Rule with factor 131 (adapted from Sedgewick [Sed92]) produced the least number of collisions.for (sum=0; *word; word++) {sum = (sum*131) + *word; }return (sum % hashTableSize); }For double hashing, 
(n2) probe sequences are used rather than 
(n) for linear or quadratic probing(see [CLR90]) improving performance as more possible locations are examined. We selected a primenumber size (20023) to ensure that the modulo function (%) is not followed by an integer with smalldivisors else the hash algorithm will be pre-disposed to clustering [Amm98]. Also, if hashTableSize and



hashTableSize� 2 are not relative primes at the least, they will have a greatest common divisor (gcd)and only 1gcd of the table will be probed (see [CLR90]) for vacancies both 20023 and 20021 are prime.Again for partial match we employ the additional document data structure used for the IFL.1.3 Advanced Uncertain Reasoning Architecture (AURA)AURA [Aus95] is a collection of techniques that may be implemented in a modular fashion and utilisesCorrelation Matrix Memories (CMMs, [Aus95]) to map inputs to outputs (see �g ??) through a learningrule, similar to a hash function. AURA does not su�er from the lengthy training problem of other neuralnetworks; training is a one shot (single epoch) process and AURA is able to match only partial inputs.Storage is e�cient as patterns are stored distributively and new inputs do not require additional memoryallocation, they are overlaid with existing trained patterns [TA]. The AURA modular neural networkuses binary weights and inputs. Learning is supervised as the outputs are known and guide the learningprocess. The words form the inputs and the documents the class patterns (outputs). The words, areinitially translated to binary patterns by the lexical token converter (the neural network requires binarydata inputs). The binary pattern for each token has a preset constant number of bits set to 1 in a �xed-length binary array. The documents form the class patterns, again the document ID is translated by thelexical token converter to a binary bit vector with a prede�ned number of bits set. We use orthogonalvectors with 1 bit set to prevent false positive matches during retrieval (see [Knu68]).1.3.1 Training the network
1

0

0

0

1

0

0

00 01000

0

0 0

0 0010

0

0

Class PatternClass Pattern Class Pattern

1

00

Inputs to be trained into the network

1000

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

Figure 2: Diagram showing three stages of network trainingThe diagram (�gure 2) shows a CMM after 1,2 and 3 patterns have been trained. The CMM is set to onewhere an input and class pattern (row and column respectively) are both set (see �gure 2). The trainingprocess is 
(n) as there is one association trained into the CMM per word-document pair.1.3.2 Recalling from the networkThis process is essentially similar to the training process except only the word pattern is input. Thecolumns are summed and the activation of the network thresholded using the Willshaw threshold (see[Aus95]) to produce an output vector (see �gure 3). The vector retrieved represents the matching docu-ment for the input word presented to the network during recall.If we wish to retrieve multiple word matches, rather than serially matching the bit vectors, AURA repli-cates parallel matching. The bit vectors matching the required word inputs are superimposed, forminga single vector (see �gure 3). Thus multiple word matching is 
(1) with respect to input epochs. Theprevious two data structures are 
(n). For partial match, AURA exploits the fact that all words in theIR system have a de�nite mapping from the words to the documents. If only M of N words (M < N)



0

0

0

0

0

0

1

0 0

0

0

1

Output pattern after thresholding 

Activation - 1 input bit set: threshold at 1

0

0

0 1 000 00

0

0

0

0

0

0

00 000

1

0 0

00 0

0

1

Activation - 2 input bits set: threshold at 2

0 1 0

00

1

0

0

0

0

1

0

0

0

Output pattern after thresholding 

00

1

0 000

220Figure 3: Diagram showing system recall for single and superimposed inputs. The single input patternhas 1 bit set so the CMM is thresholded at 1. The superimposed input has 2 bits set so the Willshawthreshold is set to 2.in the input must match then the Willshaw threshold is set at M � B where B is the number of bits setin each input vector. The outputs from multiple word retrievals will be superimposed in the output vector.The outputs for single and multiple word matches must be identi�ed. A list of valid outputs is heldin a content-addressable memory and matched in the lexical token converter - binary to data. The timefor this process is proportional to the number of bits set in the output vector �(bits set), there will beone matching word per bit set for orthogonal (single bit set) vectors.1.4 AnalysesAll analyses were performed on a SGI Origin 2000 with the following speci�cations:32 X 180 MHZ IP27 Processors (MIPS R10000).Main memory size: 8192 Mbytes.All data structures were compiled with the CC compiler using -Ofast (fast binaries) and -64 (64 bit). Thealgorithms were run with the command runon x <algorithm> and one process from each data structurewas run in parallel to minimise variance.The following analyses were performed on the data structures:1. The memory usage for each algorithm was calculated using the C/C++ sizeof() utility.2. The training times were calculated using the C/C++ clock() function. The training time was thetime to read in the list of words, input them to the data structure and read in each of the word-to-document associations adding the appropriate links in the data structures (document IDs are addedto the front of the lists in the IFL and hash table for speed). For the CMM the list of documentswas also read into the data-to-binary converter prior to adding the associations.3. Partial Match. Each data structure was trained a priori. The list of the most frequent words; thosethat occur in at least 20% of the documents was read and the matching documents for each wordretrieved in turn. For the IFL and hash table the appropriate document counter was incrementedas each document was returned. After all words had been matched, the document list was traversedto �nd all documents matching > M words. For the CMM, the binary patterns for the wordswere retrieved, superimposed and input. The output was thresholded at the appropriate value andthe matching documents retrieved from the binary-to-data lexical token converter. The partialmatch retrieves the documents that match more than 10, 11, ... and more than 37 of the mostfrequently occurring words to test partial matching. There are 38 words in the word set and the18249 documents match between 0 and 38 words. For all data structures the output to the �le isidentical.



1.5 Results1.5.1 Memory Usage IFL Hash Table CMMTotal Memory Usage in bytes 10945622 11556478 142007181.5.2 Training Times IFL Hash Table CMMAverage Training time for 20 training epochs in secs 1965.365 1570.48 98.311.5.3 Partial MatchFigure 4 shows a graph of the speedup of the average retrieval times (averaged over 20 retrievals) for eachdata structure. The data structure were timed for retrieving the documents that match more than 10 tomore than 37 of the most frequently occurring words in the text corpus. The graph shows the time foreach data structure / the time for the CMM.
0

5

10

15

20

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

S
pe

ed
up

 -
 ti

m
e 

fo
r 

da
ta

 s
tr

uc
tu

re
 / 

tim
e 

fo
r 

C
M

M

More than X matching words

Speedup of CMM vs other algorithms

IFL
Hash Array

Figure 4: Graph of the speedup of the CMM versus the other data structures when retrieving highlysaturated words. Speedup = time for data structure / time for CMM retrieval.2 Analysis2.1 Memory UsageThe memory totals for the 3 algorithms are in ascending order: IFL, hash table and CMM. As statedpreviously, the inverted �le list will use the least memory but, as can be seen from the subsequent analyses,is slower. The CMM memory usage is 1.3 times higher than the inverted �le list. However, none of thememory usage statistics is signi�cantly larger than the others.2.2 Training TimesThere is a signi�cant di�erence between the training times. The IFL is the slowest to train as expected.Each word search requires a binary search through the entire array O(log n) before the document may beappended to the word's list. The training times for the hash table is quicker as we would expect. Training�nds the hash location for each word (
(1)) and appends the document to the corresponding document



list. By far the quickest to train is the CMM. The CMM does not require the lengthy word search. Eventhe hash function ! O(n) if there are collisions. The CMM simply associates and recalls the word anddocument in one step.2.3 Partial MatchThe IFL is slower than the hash tables in all instances of partial matching due to the binary searchO(log n) through the array to locate the words prior to �nding the associated documents. The hash tableis faster than the IFL in all instances. The CMM is slower than the hash table for low frequency partialmatch but for higher frequency partial match the CMM excels. The time curve for the CMM starts abovethe hash table but falls below for `more than 13'. The time di�erence between the CMM and the has tablewill level o� and eventually fall as the y-axis forms a lower bound asymptote to the CMM curve and theretrieval speed of the hash table will continue to fall thus slowly approaching the CMM curve. However,the hash table will only approach the CMM slowly and may never reach it so the CMM is preferable forpartial matching.3 ConclusionFor partial matching the CMM performs best. Although the memory usage is higher (but not signi�cantlyso) the retrieval speed is superior; the greater the number of words to be matched at each retrieval, themore superior the CMM is. We recommend the CMM for word to document association storage andretrieval as the approach is superior with respect to training time and retrieval time with only a slightlyhigher memory usage. The CMM enables single epoch training, requiring only one pass through the listof word-document associations unlike other neural networks that require multiple epochs to enable thenetwork to settle. The superimposition of the input vectors allows one-shot multiple word retrieval andpartial match - emulating parallel retrieval. We also note that more word-document associations could beadded to the existing CMM without signi�cantly increasing the memory usage due to the superimposedstorage. For the other data structures evaluated, additional associations would increase the memory useof the list array with one additional list node for each additional document association.References[Amm98] L. Ammeraal. Algorithms and Data Structures in C++. John Wiley & Sons, Chichester,England, 1998.[Aus95] Jim Austin. Distributed associative memories for high speed symbolic reasoning. In R. Sunand F. Alexandre, editors, IJCAI '95 Working Notes of Workshop on Connectionist-SymbolicIntegration: From Uni�ed to Hybrid Approaches, pages 87{93, Montreal, Quebec, August 1995.[BP98] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web SearchEngine. In 7th International World Wide Web Conference, 1998.[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,Cambridge, MA, 1990.[Knu68] D. E. Knuth. The Art of Computer Programming, volume 3. 1968.[Sed92] R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.[TA] Mick Turner and Jim Austin. Matching Performance of Binary Correlation Matrix Memories.

View publication statsView publication stats

https://www.researchgate.net/publication/3857929

