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Abstra
t

In this paper, we propose a hierar
hi
al, lexi
al 
lustering neural network algo-

rithm that automati
ally generates a thesaurus (synonym abstra
tion) using purely

sto
hasti
 information derived from unstru
tured text 
orpora and requiring no

prior word 
lassi�
ations. The lexi
al hierar
hy over
omes the Vo
abulary Problem

by a

ommodating paraphrasing through using synonym 
lusters and over
omes

Information Overload by fo
using sear
h within 
ohesive 
lusters. We des
ribe ex-

isting word 
ategorisation methodologies, identifying their respe
tive strengths and

weaknesses and evaluate our proposed approa
h against an existing neural approa
h

using a ben
hmark statisti
al approa
h and a human generated thesaurus for 
om-

parison. We also evaluate our word 
ontext ve
tor generation methodology against

two similar approa
hes to investigate the e�e
t of word ve
tor dimensionality and

the e�e
t of the number of words in the 
ontext window on the quality of word 
lus-

ters produ
ed. We demonstrate the e�e
tiveness of our approa
h and its superiority

to existing te
hniques.

Key words: neural network, hierar
hi
al thesaurus, lexi
al, synonym 
lustering.

1 Introdu
tion

Due to the proliferation of information in databases and on the Internet, users

are overwhelmed produ
ing Information Overload. Web Sear
h engines 
an

return millions of potential mat
hes to user queries even when more 
omplex
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(and user-unfriendly) Boolean logi
 is employed. Web sear
h engines 
an be

slow, although faster sear
h engines are being developed, and mat
hing is often

poor (quantity does not ne
essarily indi
ate quality) as Sear
h Engines often

employ simple keyword pattern mat
hing that takes no a

ount of relevan
e.

Sear
h Engines often simply return the do
ument with the greatest number

of keyword o

urren
es. A methodology to pro
ess do
uments unsupervised,

handle paraphrasing of do
uments, to fo
us retrieval by minimising the sear
h

spa
e and to automati
ally 
al
ulate the do
ument similarity from statisti
s

available in the text 
orpus is desired. Do
ument may be 
lustered a

ording

to the user's requirements (
lustered `on the 
y') and then employ 
ategory-

spe
i�
 �ner-grained mat
hing te
hniques.

Word 
ategorisation (en
ompassing both unsupervised 
lustering and super-

vised 
lassi�
ation) enables the words to be asso
iated or grouped a

ording

to their meaning to produ
e a thesaurus. In this paper we fo
us solely on

word 
lustering as this approa
h is unsupervised. Clustering does not require

pre-generated human 
lassi�
ations to train the algorithm and is therefore less

subje
tive and more automated as it learns from text 
orpus knowledge only.

Word 
lustering 
an also over
ome the Vo
abulary Problem 
ited by Chen et

al. [2℄. They posit that through the diversity of expertise and ba
kground of

authors and the polysemy of language, there are many ways to des
ribe the

same 
on
ept; there are many synonyms. In fa
t, Stetina et al. [20℄ postulate

that polysemous words o

ur most frequently in text 
orpora even though

most words in a di
tionary are monosemous. Humans are able to intuitively


luster do
uments from imputed similarity. They over
ome the di�ering vo-


abularies of authors and the inherent synonymy and polysemy of language. A


omputerised system must be able to mat
h this ability. For 
omputerised do
-

ument similarity 
al
ulation, an underlying hierar
hi
al synonym 
lustering is

required to enable di�ering vo
abularies to be a

ommodated. The distan
es

in the hierar
hy may be used for word similarity estimation and to s
ore do
-

ument similarity, thus allowing paraphrased do
uments to be awarded high

similarity s
ores as their 
ontained words fall into identi
al or neighbouring

synonym 
lusters. Human generated thesauri are too general; they en
ompass

all senses of words even though many are redundant for a parti
ular domain.

They are expensive with respe
t to 
onstru
tion time parti
ularly if a single

human knowledge engineer generates the hierar
hy. If multiple experts are


onsulted then it is very diÆ
ult to obtain a single uni�ed hierar
hy. Human

thesauri also omit 
ertain senses and subdivide others where there is little

distin
tion; they are rather subje
tive. Automati
 methods 
an be trained

generally or domain spe
i�
ally as required. The hierar
hy allows us to fo
us

sear
hing to 
ohesive 
lusters therefore minimising the sear
h spa
e for ea
h

query. In this paper we analyse 
urrent word 
ategorisation approa
hes and

des
ribe and evaluate our method with respe
t to the 
urrent implementa-

tions. We 
ompare our TreeGCS 
lustering method [7℄, [6℄ and se
tions 3.2

and 3.3 to the Self-Organising Map (SOM) [11℄ method and then 
ompare
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three methods for 
ontext ve
tor generation where the ve
tor dimensionality

and the number of words in the 
ontext are varied. We demonstrate the ne-


essity of using high-dimensional ve
tors to represent the individual words in

the do
uments. High dimensional ve
tors ensure that the word ve
tors are

approximately orthogonal and there are no impli
it word dependen
ies or

relationships in the ve
tors representing the individual words. Therefore all

dependen
ies and relationships are imputed purely from the relationships be-

tween the do
ument words. We demonstrate the superiority of a wider 
ontext

window when generating the 
ontext ve
tors, illustrating the superior qual-

ity 
lusters and higher stability of the 
luster topology produ
ed. Finally we

establish the higher quality of the 
lusters produ
ed by TreeGCS 
ompared

to SOMs. The 
lusters produ
ed from TreeGCS are similar to the 
lusters

extra
ted from a ben
hmark human generated thesaurus

Our approa
h is entirely automated and uses only unstru
tured text 
orpora

as data. The motivation for our approa
h derives from the patterns present in

text. These patterns produ
e statisti
al 
orrelations in the 
ontext patterns

of individual words. We 
an thus infer the similarities of words from their


ontexts, as similar words (synonyms) will have similar 
ontexts due to their


orrelations. Through unsupervised text pro
essing and 
lustering we repre-

sent semanti
 relationships by 
ategorising the word 
o-o

urren
e patterns.

We do not need to generate any linguisti
 stru
tures, whi
h are 
omplex to

produ
e and tend to be sus
eptible to linguisti
 ambiguities. We automati-


ally infer a domain-spe
i�
 or generalised hierar
hi
al thesaurus as required.

We therefore surmount the Vo
abulary Problem [2℄ by permitting synonym re-

trieval to mat
h paraphrased do
uments. We 
an use the thesaurus to award

s
ores to synonyms using the intra-
luster distan
es and the inter-
luster dis-

tan
es in the hierar
hy.

2 Current Methods

Current approa
hes for textual analysis are multifarious and diverse. The moti-

vations en
ompass word sense disambiguation, synonym inferen
ing and both


lassi�
ation and 
lustering. They in
lude (the following list is not exhaus-

tive but is intended to be broad): 
ontextual methods, WordNet hierar
hy

methods, 
lustering methods and SOM methods.

2.1 Contextual Methods

These approa
hes utilise the lo
al neighbourhood of words in a do
ument (the


ontext) to establish lexi
al similarity and impute synonym groups or disam-
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biguate polysemi
 words. Yarowsky [22℄ employs two phases: an iterative

bootstrapping pro
edure and an unsupervised 
ategorisation phase. All in-

stan
es of a polysemous word are identi�ed in the text 
orpus. A number of

representative samples are sele
ted from ea
h sense set and used to train a su-

pervised 
lassi�
ation algorithm. The remainder of the sense sets are trained

into the supervised 
lassi�er. The 
lassi�er may additionally be augmented

with one sense per dis
ourse information, i.e., do
ument topi
. The 
lassi�er


an then be used in an unsupervised mode to 
ategorise new exemplars. Stetina

et al [20℄ postulate that one sense per dis
ourse holds for nouns but eviden
e

is mu
h weaker for verbs. The approa
h therefore is only suitable for nouns

and requires an appraisal of the text 
orpus before pro
essing 
ommen
es to

identify the nouns. The method is only partially unsupervised requiring a su-

pervised initial training method; i.e. human intervention whi
h 
an be time


onsuming.

The motivation for Sh�utze & Pederson [19℄ is a lexi
al hierar
hy exploit-

ing 
ontextual statisti
s and requiring no prior data knowledge. The algorithm


olle
ts a symmetri
, term-by-term matrix re
ording the number of times that

words i and j 
o-o

ur in a symmetri
 window 
entred about word i in the text


orpus, where i and j are any random word indi
es from the list of all 
orpus

words. Singular-valued de
omposition (SVD) is used to redu
e the dimension-

ality of the matrix to produ
e a dense ve
tor for ea
h item that 
hara
terises its


o-o

urren
e neighbourhood. The dense 
o-o

urren
e ve
tors are 
lustered

using an agglomerative 
lustering algorithm to generate a lexi
al hierar
hy.

The method groups words a

ording to their similarity unsupervised rather

than some pre-
omputed thesaurus 
ategories. However, ve
tor dimensionality

redu
tion introdu
es 
omputational 
omplexity and may 
ause information

loss as the ve
tors indu
ed represent the meta-
on
epts and not individual

words. Shannon's Theory states that the more infrequent a word the more

information it 
onveys. These may well be dis
arded by SVD. The method

does not a

ount for the proximity of the word 
o-o

urren
es (
o-o

urren
e

is 
onsidered from a purely binary perspe
tive). There is no weighting of the


o-o

urren
e a

ording to the two terms' proximity in the 
ontext window.

2.2 WordNet Hierar
hy

These methods utilise the human-generated hierar
hi
al 
ategorisation of syn-

onyms, hyponyms (IS-A) and metonyms (PART-OF) of WordNet to estimate

word similarity and the most appropriate word sense (WordNet lists all senses

of words with the most frequently o

urring listed �rst). Li, Szapakowi
z &

Matwin's [14℄ method utilises the WordNet synonym, hyponym and metonym

hierar
hy to assign word similarity a

ording to the distan
e in the hierar
hy.

Similarity is inversely proportional to distan
e. However, the distan
e of tax-
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onomi
 links is variable, due to 
ertain sub-taxonomies being mu
h denser

than others. Again the te
hnique relies on an underlying predetermined word

hierar
hy and 
an only pro
ess words present in the hierar
hy; it 
ould not ex-

trapolate similarities to new words. Human generated thesauri are subje
tive

and rely on sense 
ategorisation de
isions made by the human 
onstru
tor.

2.3 Clustering

An unsupervised 
lustering algorithm derives the word 
lusters and models

of asso
iation dire
tly from distributional data rather than pre-determined


lasses as in Yarowsky. Pereira, Tishby & Lee [17℄ employ a divisive 
lus-

tering algorithm for probability distributions to group words a

ording to

their parti
ipation in parti
ular grammati
al relations with other words. In

the paper, nouns are 
lassi�ed a

ording to their distribution as dire
t obje
ts

of verbs with 
luster membership de�ned by p(
jw) (the probability a word

belongs to a 
luster) for ea
h word rather than hard Boolean 
lassi�
ation.

Deterministi
 annealing �nds the sets of 
lusters by starting with a single

holisti
 
luster and in
reasing the annealing parameter (see paper [17℄). As

the annealing parameter in
reases, the 
lusters split produ
ing a hierar
hi
al

data 
lustering. The approa
h is limited to spe
i�
 grammati
al relations, re-

quiring a pre-pro
essor to parse the 
orpus and tag the part-of-spee
h. At the

time of writing, the authors felt the te
hnique required further evaluation.

2.4 Self-Organising Map (SOM) Methods

Word ve
tors or do
ument ve
tors form the input ve
tor spa
e of the SOM [11℄

to permit topologi
al mapping, to infer similarity and 
ategorise words and

do
uments. The aim of Lowe [15℄ is a topologi
al mapping of 
ontextual simi-

larity exploiting 
ontextual information to derive semanti
 relationships. Ea
h

word in a 29-word vo
abulary is asso
iated with a 58-element 
o-o

urren
e

ve
tor. The value of the nth attribute in the 
o-o

urren
e ve
tor re
e
ts

the number of times the nth word of the vo
abulary has pre
eded and the

(n + 29)th attribute represents the number of times the nth word has su
-


eeded the keyword where 1 � n � 29. The 58 element ve
tors form the input

ve
tors for a SOM network. The SOM is labelled by determining the best

mat
hing unit for ea
h input ve
tor. The word 
ontexts (labels) are arranged

topologi
ally a

ording to lexi
al and semanti
 similarity by the SOM. How-

ever, the method is inherently sus
eptible to the s
alability problem; ve
tor

length grows linearly in relation to lexi
al size and thus the method is not

feasible for a large vo
abulary.
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Ritter & Kohonen's [18℄ approa
h provides the motivation for our sys-

tem. A topologi
al map of semanti
 relationship among words is developed

on a self-organising feature map. In the initial implementation, ea
h word

has a unique, seven-dimensional, unit length ve
tor assigned. The input ve
-

tor spa
e is formed from the average 
ontext in whi
h ea
h word o

urs in

the text 
orpus. Semanti
 similarity is indu
ed from 
ontext statisti
s, i.e.,

word neighbourhoods using a window of size three, one word either side of

the target word, (only nouns verbs and adverbs are used in the method). The

method has been extended to WEBSOM [9℄, [8℄, [12℄ that 
ategorises over one

million do
uments using a window size of three and 90-dimensional word ve
-

tors. The approa
h is entirely unsupervised requiring no human intervention

and parallelisable enabling 
omputational speedup. However, SOMs 
annot

form dis
rete (dis
onne
ted) 
lusters thus inhibiting the data representation.

The 
lusters have to be determined after the algorithm terminates by hand

and this introdu
es the innate subje
tivity of human judgements. Also, the

word topography in WEBSOM is single-layered 
ompared to the hierar
hi
al

topology we indu
e using TreeGCS [7℄ [6℄ and des
ribed later in the paper.

2.5 Summary

Many of the methods exposited use Zipf's Law [23℄ and stop-word elimina-

tion to redu
e the vo
abulary of the text 
orpus to be pro
essed, some even

implement word stemming. Zipf's Law implies that a signi�
ant portion of

the words in a 
orpus 
onstitutes the words that appear most infrequently

whereas frequently o

urring words 
omprise a relatively small portion of the


orpus. Many approa
hes eliminate these infrequent words to de
rease ve
-

tor dimensionality and 
omputational requirements. The designers of these

approa
hes deem that su
h words provide little dis
riminatory power for do
-

ument similarity assessment. We feel that this may dis
ard essential informa-

tion. Although we do not generate 
ontext averages for frequent words, e.g.,

fthe, and, but, et
.g, we in
lude these words in the 
ontext averaging of the

keywords. For this reason we use a 
ontext size of seven (three words either

side of the target word). We demonstrate in se
tions 4 and 6 the qualitative

improvement of word 
lustering against a human-generated thesaurus and Eu-


lidean distan
e-based ve
tor approa
h of a size seven window 
ompared to

size three. Ritter & Kohonen [18℄ and their extrapolations [9℄, [8℄, [12℄, �x

the 
ontext window at three and thus have to dis
ard frequent terms, infre-

quent terms and pun
tuation et
. We feel these provide mu
h information

and are 
ertainly employed by a human reader when parsing text. Dagan,

Lee & Pereira [3℄ empiri
ally demonstrated that singleton words (words o
-


urring on
e) were important for parsing 
on
urred by Shannon's theory. An

infrequent word o

urring only on
e in two do
uments may be the key to

identifying those do
uments and should not be dis
arded from the indexing.
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The larger window allows us to maximise the lexi
al information used and

minimise the amount of pre-pro
essing required.

3 Our Methodology

We 
luster words into a synonym hierar
hy using the TreeGCS hierar
hi
al


lustering neural network that we have developed, des
ribed in [7℄ [6℄ and se
-

tions 3.2 and 3.3. TreeGCS is an unsupervised growing, self-organising hierar-


hy of nodes able to form dis
rete 
lusters. Similar high-dimensional inputs are

mapped onto a two-dimensional hierar
hy re
e
ting the topologi
al ordering

of the input ve
tor spa
e. We assume a latent similarity in word 
o-o

urren
es

and use TreeGCS to estimate word similarity from 
ontextual statisti
s with-

out resorting to a human-generated thesaurus. We 
ategorise all keywords as

dis
ussed previously and perform no dimensionality redu
tion thus de
reasing

information loss. The pro
ess is fully automated, requires no human inter-

vention or data pro
essing as the 
ontext ve
tors are generated automati
ally

from unstru
tured text data and the 
lustering requires minimal knowledge

of the data distribution due to the self-organising network. Ea
h node in the

hierar
hy represents a small group of synonyms at the lowest level and pro-

gressively larger groups of related words up through the tree. The distan
e

between the nodes in the tree is dire
tly proportional to the similarity of the

word sets they represent.

3.1 Pre-pro
essing

All upper-
ase letters are 
onverted to lower-
ase to ensure mat
hing. A list of

all words and pun
tuation marks in the text 
orpus is generated and a unique

random, real-valued, unit-length m-dimensional ve
tor ~x is assigned to ea
h

word as in (equation 1).

Word! ~x 2 <

m

(1)

Stop-words are removed to 
reate a se
ond list of keywords. A moving window

of size n is passed a
ross the text 
orpus, one word at a time (see �gure 1).

Ritter & Kohonen use a 
ontext window of size three, we use size seven and

illustrate the qualitative improvement this generates in se
tions 4 and 6. If

the word in the window 
entre is a keyword (~x

middle

2 fkeywordg) then the

unique, random, real-valued, unit length m-dimensional ve
tors representing

ea
h word in the window of size n (

~

x

1

: : :

~

x

n

) are 
on
atenated and added to the

m � n dimensional 
ontext ve
tor ~y

keyword

representing the keyword (equation

2).

~y

keyword

2 <

m�n

= ~y

keyword

+

~

x

1

: : :

~

x

n

^ (~x

middle

2 fkeywordg) (2)
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When the entire 
orpus has been pro
essed, all 
ontext ve
tors generated for

ea
h keyword are averaged (total for ea
h dimension / frequen
y of keyword),

see equation 3.

~

Avg

y

= 8i

~y

i

frequen
y

(3)

~

Avg

y

= symFa
t � ~y

i

for keyword attributes (4)

The keyword attributes in the average ve
tor are �nally multiplied by the sym-

bol fa
tor (symFa
t in equation 4). The keyword is multiplied by a symbol

fa
tor of value 0.2 in Ritter & Kohonen's method for average 
ontext ve
tor

generation and also in the WEBSOM average 
ontext ve
tor generation te
h-

nique. The symbol fa
tor diminishes the relative in
uen
e of the keyword (the


entral word in the 
ontext window) in relation to the surrounding words in

the 
ontext window for the average 
ontext ve
tors. This prevents the a
tual

keyword over-in
uen
ing the topologi
al mapping formation and pla
es the

emphasis for topology and semanti
 similarity inferral on the 
ontext ve
tor

attributes, the surrounding words. We empiri
ally determined the optimum

fa
tor value for our approa
h with a 
ontext window size of seven and found

for seven-dimensional ve
tors that a symbol fa
tor of 0.4 produ
ed the opti-

mal 
luster quality (as judged by the authors). For 90-dimensional ve
tors the

symbol fa
tor has far less in
uen
e over the Eu
lidean distan
es between the


ontext averages and thus the 
lusters generated, so we ele
ted to use a symbol

fa
tor of 0.4, as this was more e�e
tive for the seven-dimensional ve
tors. This

prevents the keyword over-in
uen
ing the 
ontext average but still provides

suÆ
ient in
uen
e for a 
ontext window of size seven.

As with Deerwester [4℄, we handle synonymy but only partially a

ommo-

date polysemy. Polysemi
 words are again represented by a weighted average

of their 
ontexts but we only generate one 
ontext for polysemi
 words (the


ontext is the mean 
ontext of all word senses biased by the frequen
y of o
-


urren
e of ea
h sense). For example, plant may be a living organism or heavy

ma
hinery. Only one 
ontext average would be produ
ed for plant.

3.2 GCS Algorithm

Our TreeGCS method is based on the Growing Cell Stru
ture (GCS) method

that is des
ribed next and is adapted from [5℄. GCS networks form dis
rete


lusters unlike SOMs where the SOM 
ells remain 
onne
ted in a latti
e stru
-

ture. The dimensions of the SOM latti
e have to be pre-spe
i�ed (su
h as the

9x9 grid used in our evaluation later in this paper). Contrastingly only the

maximum number of 
ells needs to be pre-spe
i�ed in GCS and the network

grows dynami
ally by adding new 
ells and deleting super
uous 
ells until

the maximum number of 
ells is rea
hed. The initial topology of GCS is a

2-dimensional stru
ture (triangle) of 
ells (neurons) linked by verti
es. We
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use a 2-dimensional 
ell network to allow a hierar
hy to be superimposed and

to allow visualisation if ne
essary. Ea
h 
ell has a neighbourhood de�ned as

those 
ells dire
tly linked by a vertex to the 
ell. The input ve
tor distribution

is mapped onto the 
ell stru
ture by mapping ea
h input ve
tor to the best

mat
hing 
ell. Ea
h 
ell has a 
ontextWindow �wordV e
torDimensionality-

dimensional ve
tor atta
hed denoting the 
ell's position in the input ve
tor

spa
e; topologi
ally 
lose 
ells have similar atta
hed ve
tors. On ea
h iteration,

the atta
hed ve
tors are adapted towards the input ve
tor. The adaptation

strength is 
onstant over time and only the best mat
hing unit (bmu) and its

dire
t topologi
al neighbours are adapted unlike SOMs where the adaptation

o

urs in a progressively redu
ing radius of neurons around the bmu. Cells are

inserted where the 
ell stru
ture under-represents the input ve
tor distribution

and super
uous 
ells that are furthest from their neighbours are deleted. Ea
h


ell has a `winner 
ounter ' variable denoting the number of times that 
ell has

been the bmu. The winner 
ounter of ea
h 
ell is redu
ed by a predetermined

fa
tor on every iteration. The aim of the GCS method is to evenly distribute

the winner 
ounter values so that the probability of any 
ell being a bmu for

a random input is equal, i.e., the 
ells a

urately represent the input spa
e.

The GCS learning algorithm is des
ribed below, the network is initialised

in point 1 and points 2 to 7 represent one iteration. An epo
h 
onstitutes one

iteration (points 2 to 7) for ea
h input ve
tor in the dataset, i.e. one pass

through the entire dataset.

(1) A random triangular stru
ture of 
onne
ted 
ells with atta
hed ve
tors

(w




i

2 <

n

) and E representing winner 
ounter (the number of times the


ell has been the winner) is initiated.

(2) The next random input ve
tor � is sele
ted from the input ve
tor density

distribution. The input ve
tor spa
e is represented as real-valued ve
tors

of identi
al length.

(3) The best mat
hing unit (bmu) is determined for � and the bmu's winning


ounter is in
remented.

bmu = jj� � w




jj

min


2network

where jj jj = Eu
lidean distan
e

�E

bmu

= 1

(4) The best mat
hing unit and its neighbours are adapted towards � by

adaptation in
rements set by the user.

�w

bmu

= �

bmu

(� � w

bmu

)

�w

n

= �

i

(� � w

n

) (8n 2 neighbourhood)

(5) If the number of input signals ex
eeds a threshold set by the user a new


ell (w

new

) is inserted between the 
ell with the highest winning 
ounter

(w

bmu

) and its farthest neighbour (w

f

) - see �gure 2,

The weight of the new unit is set a

ording to:

w

new

= (w

bmu

+ w

f

)=2.

Conne
tions are inserted to maintain the triangular network 
on�gura-

tion. The winner 
ounter of all neighbours of w

new

is redistributed to
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donate fra
tions of the neighbouring 
ells' winning 
ounters to the new


ell and spread the winning 
ounter more evenly,

�E

n

= �

1

jnj

E

n

(8n 2 neighbourhood of w

new

).

The winner 
ounter for the new 
ell is set to the total de
remented from

the winning 
ounters of the neighbouring 
ells.

E

new

=

P

(

1

jnj

E

n

(8n 2 neighbourhood of w

new

).

(6) After a user-spe
i�ed number of iterations, the 
ell with the greatest

mean Eu
lidean distan
e between itself and its neighbours is deleted and

any 
ells within the neighbourhood that would be left `dangling' are also

deleted (see �gure 3). Any trailing edges are deleted to maintain the

triangular 
on�guration.

Del = max


2network

(

P

jjw




�w

n

jj


ard(n)

8n 2 neighbourhood)

(7) The winning 
ounter variable of all 
ells is de
reased by a user-spe
i�ed

fa
tor to implement temporal de
ay.

�E




= ��E




8
 2 network

The user-spe
i�ed parameters are: the dimensionality of GCS whi
h is �xed

at 2 here, the maximum number of neighbour 
onne
tions per 
ell, the max-

imum 
ells in the stru
ture, �

bmu

the adaptation step for the winning 
ell, �

i

the adaptation step of the neighbourhood, � the temporal de
ay fa
tor, the

number of iterations for insertion and the number of iterations for deletion.

The algorithm iterates until a spe
i�ed performan
e 
riterion is met, su
h

as the network size. If the maximum number of epo
hs and the maximum

number of 
ells are spe
i�ed as the termination 
riteria then new 
ells are in-

serted until the maximum number of 
ells is rea
hed. On
e the maximum has

been rea
hed, adaptation 
ontinues ea
h iteration and 
ells may be deleted.

The 
ell deletion redu
es the number of 
ells to below the maximum allow-

ing one or more new 
ells to be inserted until the maximum number of 
ells

is rea
hed again. Deletion removes super
uous 
ells while 
reating spa
e for

new additions in under-represented regions of the 
ell stru
ture so the in-

put distribution mapping is improved while the maximum number of 
ells is

maintained.

3.3 TreeGCS Algorithm

The TreeGCS is superimposed onto the standard GCS algorithm exposited

above. A tree root node points to the initial 
ell stru
ture and in
orporates a

list of all 
ells from the GCS. As the GCS splits or 
lusters are deleted, the tree

divides and removes leaf nodes to parsimoniously summarise the disjoint net-

work beneath and the GCS 
ell lists are updated with ea
h leaf node holding a

list of all GCS 
ells in its asso
iated 
luster. Only leaf nodes maintain a 
luster

list. A parent's 
luster list is impli
itly a union of the 
hildren's 
luster lists

10



and is not stored for eÆ
ien
y - minimising memory usage. No 
onstraints are

imposed on the tree hen
e it is dynami
 and requires no prior data knowledge

- the tree progressively adapts to the underlying 
ell stru
ture. The hierar
hy

generation is run on
e after ea
h GCS epo
h. The running time per hierar
hy

generation iteration is O(
ells) as we essentially breadth-�rst sear
h through

the entire 
ell stru
ture.

A 
on
eptual hierar
hy of word synonym 
lusters is generated. The distan
e in

the hierar
hy between two 
on
epts is inversely proportional to the similarity.

Con
epts are progressively more general and the 
luster sets be
ome larger

towards the root of the hierar
hy.

The underlying GCS's algorithm is sus
eptible to the ordering of the input

ve
tor spa
e, if we alter the order of the input ve
tors in the dataset, a di�er-

ent 
luster topology is generated for ea
h unique input ve
tor order [7℄. Thus,

in TreeGCS we only 
ommen
e 
ell deletion on
e 90 % of the total 
ells re-

quired in the 
ell stru
ture have been added [7℄. This delayed deletion prevents

premature 
luster 
ommittal and ensures the GCS network has evolved suÆ-


iently before 
luster splitting 
ommen
es. In addition, we also iterate between

di�erent orders of the input ve
tor spa
e to ameliorate the order sus
eptibility

(the x dimensional ve
tors that represent the 
ontext averages are rearranged

to generate di�erent data orders). Iterating between di�erent orders 
an
els

out the varian
e in the hierar
hi
al stru
tures generated by the di�erent or-

ders, vastly improving the algorithm's qualitative performan
e. The algorithm

for the tree superimposition is detailed below in pseudo
ode.

For ea
h epo
h,

Exe
ute the GCS epo
h, forming an un
onne
ted graph representing the

disjoint 
lusters.

Breadth �rst sear
h from the �nal winning 
ell for the epo
h to deter-

mine whi
h 
ells are present in the 
luster.

While some 
ells remain unpro
essed,

Breadth �rst sear
h from the next unpro
essed 
ell to determine

whi
h 
ells are present in the 
luster.

If the number of 
lusters has in
reased from the previous epo
h, then any

tree nodes that point to multiple 
lusters are identi�ed and 
hild nodes

are added for ea
h new 
luster formed (see �gure 4). The 
luster list of

the parent is deleted and 
luster lists are updated for the 
hild nodes. If a


luster is formed from new 
ells (
ells inserted during the 
urrent epo
h)

then a new tree node is added as a 
hild of the root and the new 
luster


ells added to the new node's list.

Elsif the number of 
lusters has de
reased, a 
luster has been deleted

and the asso
iated tree node is deleted. The tree is tidied to remove any

redundan
y (see �gure 5).

For ea
h unpro
essed 
luster, the tree node that points to that 
luster is

11



determined, the 
luster list emptied and the new 
ells are added.

The GCS 
ells are labelled, see �gure 6. Ea
h input ve
tor is input to the

GCS and the 
ell identi�er of the bmu is returned. The 
ell 
an then be la-

belled with the appropriate word. Words that o

ur in similar 
ontexts map

to topologi
ally similar GCS 
ells thus re
e
ting synta
ti
 and semanti
 simi-

larity through purely sto
hasti
 ba
kground knowledge. Tree nodes are merely

pointers to GCS 
ells. All nodes ex
ept leaf nodes have only an identi�er and

pointers to their 
hildren. The leaf nodes have an identi�er but also point to

the GCS 
ell 
lusters and impli
itly the GCS 
ell labels (they maintain a list

of the identi�ers of the GCS 
ells in their respe
tive 
lusters). When the GCS

bmu is identi�ed, the asso
iated tree node 
an also be identi�ed and the tree


an be traversed to �nd all word distan
es from the distan
es between the


lusters (leaf nodes) in the tree.

4 Evaluation

We initially demonstrate the qualitative e�e
tiveness of our average ve
tor

generation method against the R & K and WEBSOM approa
hes. We also

demonstrate the qualitative e�e
tiveness of our TreeGCS algorithm against

the SOM algorithm. Human 
lustering is innately subje
tive. In an experi-

ment by Ma
skassy et al. [16℄, no two human subje
ts produ
ed `similar' 
lus-

ters when 
lustering the information 
ontained in a set of Web pages. This


reates diÆ
ulties for 
luster set evaluation and determining whether 
om-

puterised methods are qualitatively e�e
tive. We evaluate the quality of the

three methodologies for average 
ontext ve
tor generation by 
omparing the

TreeGCS 
lusters produ
ed from the ve
tors for ea
h methodology against a

dendrogram 
luster set produ
ed from the same ve
tors to provide a Eu
lidean

distan
e-based evaluation. We then 
ompare the TreeGCS hierar
hies against

the 
luster sets of a human-generated thesaurus. We 
ompare TreeGCS and

SOM 
lustering by evaluating the topologies produ
ed for ea
h set of aver-

age 
ontext ve
tors against the 
lusters produ
ed by a dendrogram trained on

the same ve
tors. Fritzke has previously demonstrated GCS's superior perfor-

man
e with respe
t to 
orre
tly 
lassi�ed test patterns over 6 
ommon neural

network approa
hes and the nearest neighbour statisti
al 
lassi�er for mapping

the vowel re
ognition dataset [5℄. In this paper, we use a small dataset 
om-

prising 51 words to enable visualisation of the 
luster stru
tures and 
luster


ontents and to permit a qualitative 
omparison of the 
luster stru
tures and


luster 
ontents. A larger dataset would pre
lude visualisation of the 
luster

stru
tures as they would be too 
omplex to draw and a qualitative 
ompari-

son of the 
luster stru
tures generated would thus be extremely diÆ
ult for a

larger dataset.
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4.1 Three Methods for Context Ve
tor Generation

We emulate the Ritter & Kohonen methodology as faithfully as possible.

We remove 
ommon words, pun
tuation and numbers from the text 
orpus.

We sele
t the ve
tors from a distribution of random numbered, seven dimen-

sional ve
tors. We use a 
ontext window of size three. We multiply the keyword

ve
tor by a symbol fa
tor of 0.2. The following 
luster topologies were gener-

ated from the text 
orpus using words that o

urred ten times or more. We


hose to only 
luster word frequen
y 10 words to ensure the 
ontext ve
tors

were truly averaged and not biased by limited exposure and also to eliminate

infrequent terms as R & K.

WEBSOM, the new development of the R & K approa
h, uses 90-dimensional

real-valued random ve
tors for the words. Kaski [10℄ showed that the orthog-

onality is proportional to ve
tor dimensionality and we have found that for

seven-dimensional ve
tors, the a
tual ve
tor assigned to ea
h word in the 
or-

pus a�e
ts the 
ontext averages and thus the similarity and 
lustering pro-

du
ed. The seven-dimensional approa
h is also more sus
eptible to the symbol

fa
tor as the multiplier has more e�e
t on the Eu
lidean distan
e than for

90-dimensional where the e�e
t is less. WEBSOM extends R & K and uses

90-dimensional word ve
tors, 
ontext window of size three and symbol fa
tor

0.2.

Our methodology des
ribed in se
tion 3 varies slightly from the previous

two. We only remove numbers from the 
orpus, the previous two methods also

remove 
ommon words and pun
tuation. We do not generate 
ontext aver-

ages for 
ommon words and pun
tuation but use them in the 
ontext window

of other words, hen
e we have a larger 
ontext window of size seven. Our

method uses 90-dimensional ve
tors and symbol fa
tor 0.4. Again only words

o

urring ten or more times are shown in the 
lusters to ensure the 
ontexts

were averaged and not biased by infrequen
y due to the small size of our test


orpus. Although normally we would in
lude these words, we wanted a valid


omparison to the previous methods.

We use the Ritter & Kohonen method, WEBSOM method and our method

for average 
ontext ve
tor generation to produ
e three sets of ve
tors. We

train ea
h of the three average 
ontext ve
tor sets in turn into a standardised

ben
hmark Eu
lidean distan
e-based 
lustering algorithm, the dendrogram,

to derive three TreeGCS and three dendrogram 
lusterings, one for ea
h 
on-

text ve
tor generation method. We 
ompare the TreeGCS and dendrogram


luster topologies for ea
h ve
tor methodology. We produ
ed one 25x25 ma-

trix for ea
h average ve
tor methodology indexed by the 25 most similar words

from the dendrogram. The 25 words are shown in bold text in �gures 7, 9 and

11. For ea
h TreeGCS 
luster (�gures 7, 9 and 11) we pla
ed a 1 at position ij
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in the respe
tive matrix if word

i

and word

j


o-o

ured in a TreeGCS 
luster

otherwise we entered a 0 in the matrix if they were in di�erent 
lusters. We

�lled the half matrix where i < j so there was only one entry per ij pair to

prevent redundan
y as 
o-o

urren
e is symmetri
, if ij 
o-o

ur then ji must


o-o

ur. After 
ompleting ea
h matrix, we 
ounted the number of 1s entered.

This represents the number of words 
lustered together in the dendrogram

top 25 
luster that are also 
lustered together in the TreeGCS 
luster stru
-

ture generated from ea
h ve
tor methodology. The highest s
ore indi
ates that

the ve
tors generated from that method enable the TreeGCS to most 
losely

emulate the Eu
lidean distan
e-based 
luster of the dendrogram. The three

TreeGCS 
lusters in �gures 7, 9 and 11 vary in depth so for a 
onsistent 
om-

parison we redu
ed the depth of the WEBSOM and our TreeGCS trees to level

4 shown in �gures 9 and 11 whi
h is equivalent to the shallowest hierar
hy by

merging all 
lusters below level 4 to form a single leaf 
luster at level 4.

We further 
ompare ea
h of the three TreeGCS 
lusters to a human word

hierar
hy derived from the MS Bookshelf

2

thesaurus. We produ
ed a 51x51

matrix for the thesaurus 
lusters and the three TreeGCS hierar
hies, indexed

by all 51 words in the evaluation. Again we entered a 1 at position ij in the

respe
tive matrix if word

i

and word

j


o-o

ured in a 
luster otherwise we

entered a 0 in the matrix. Again, we �lled the half matrix where i < j. This

produ
es 4 matri
es. We overlaid ea
h of the three TreeGCS matri
es in turn

over the human matrix and 
ounted the number of 1s in the same position in

both matri
es. This represents the number of words 
lustered together in both

the human and TreeGCS 
luster stru
tures, the higher the s
ore, the more sim-

ilar the TreeGCS 
lusters are to the human 
lusters. Again we repeated the

evaluation with the WEBSOM and our TreeGCS hierar
hies limited to level

4 for 
onsisten
y with the R & K hierar
hy.

4.2 TreeGCS versus SOM Clustering Comparison

We then train the three sets of average 
ontext ve
tors generated by the three

methods into a SOM and TreeGCS for 
omparison of the a

ura
y of the two


lustering algorithms. We 
ompare TreeGCS versus SOM purely on ve
tor

distan
es by analysing the distribution of the dendrogram words (the 25 
losest

words with respe
t to Eu
lidean distan
e) through the TreeGCS and SOM


lusters. The dendrogram 
luster sets a
t as ben
hmarks, to ensure that the

mapping of input ve
tors to 
ells for both TreeGCS and SOMs are preserving

2

We were unable to use the WORDNET hierar
hy as it does not 
ontain all of

the words from the text 
orpus. This pre
ludes the use of synSet distan
es from the

WORDNET hierar
hy [14℄ (des
ribed previously) as an evaluation tool. Bookshelf

allows us to generate 
lusters distan
es but no word similarity distan
es.
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the ve
tor distan
es. We validate that the TreeGCS 
lusters more a

urately

emulate the dendrogram 
luster sets.

4.3 Text Corpus, Dendrogram and Thesaurus

The text 
orpus for the evaluation was taken from the e
onomi
 data in the

World Fa
tbook [21℄ for ea
h of the 
ountries in Europe. This 
orpus is written

in 
orre
t English, the vo
abulary is reasonably small allowing a 
ompa
t the-

saurus to be generated with many words that have similar meanings allowing

the 
luster quality to be readily evaluated. We 
luster the 
ontext averages of

the words that o

ur ten times or more in the text 
orpus for all evaluations.

This emulates the R & K and WEBSOM methodologies that remove infre-

quent terms and it maintains a 
onsisten
y of words to be 
lustered to ensure

a valid and 
onsistent 
omparison.

The dendrogram hierar
hi
ally illustrates similarities and is ideal for stru
ture


omparison. The dendrogram uses the 
entroid-
lustering algorithm where the

algorithm iteratively merges 
lusters. Initially there is one data point per 
lus-

ter. Ea
h 
luster is represented by the average of all its data points, the mean

ve
tor; the inter-
luster distan
e is de�ned as the distan
e between pairs of

mean ve
tors. The algorithm iteratively determines the smallest distan
e be-

tween any two 
lusters, (using the Eu
lidean distan
e metri
) and the two


lusters are merged produ
ing a bran
h in the 
luster tree. The merging is

repeated until only one 
luster is left. However, dendrograms have problems

with identi
al similarities as only two 
lusters may be merged at ea
h itera-

tion, so if there are two pairs of 
lusters with equal distan
es, one pair has to

be merged on one iteration and the other pair on the next iteration, the order

being arbitrary. In dendrograms, visualisation is diÆ
ult for a large dataset as

there is one leaf node for ea
h data point so it is very diÆ
ult to view more

than 500 data points. Therefore we feel a dendrogram would be unsuitable

as the underlying me
hanism for a lexi
al 
lustering method but is relevant

for stru
ture and 
luster 
omparisons on a small dataset. Both TreeGCS and

SOMs use Eu
lidean distan
e when mapping the inputs on to the output

topology so we feel the dendrogram is 
onsistent with these approa
hes. Ea
h

input ve
tor is represented by a leaf node in the dendrogram. In the SOM and

TreeGCS, many ve
tors 
an map to leaf nodes so we 
an use the 
omparison

with the dendrogram to ensure the ve
tor mappings are not distorted and

Eu
lidean distan
e-based ve
tor similarities preserved when multiple ve
tors

map to leaf nodes.

We produ
ed synonym sets from the MS Bookshelf thesaurus to allow 
om-

parisons of the 
lusters generated in our evaluations with a human generated


lustering. The synonym sets are arranged in similarity order, the 
loser to-
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gether the more similar and the greater the distan
e the more dissimilar the

words. The synonym sets are:

� fe
onomy, system, market, budget, poli
ies, program, government, a

ountg

� finvestment, resour
es, welfare, privatization, reformg

� foutput, energy, exports, gdp, tradeg

� findustry, agri
ultureg

� fgrowth, progress, in
ationg

� fdebt, de�
itg,

� fe
onomi
, �nan
ial, industrial, monetaryg

� fagri
ulturalg

� f
urren
yg

� f
apita, per
ent, se
torg

� fsubstantial, large, highlyg

� fsmallg

� fforeign, private, publi
g

� f
ountries, republi
, stateg

� feuropean, eu, europe, union, westerng

� funemployment g

� fyearsg

4.4 Settings

All settings are summarised in tables 1, 2 and 3. Table 1 
ompares the settings

for the generation of the averaged 
ontext ve
tors from the word 
ontexts in

the text 
orpus for ea
h of the three methods evaluated. Table 2 
ompares the

settings for the SOM for ea
h method of word 
ontext ve
tor generation. We

use the SOM-PAK [13℄ SOM implementation (as used in WEBSOM [8℄). We

use the parameter settings that produ
ed the minimal quantisation error for

a 9x9 map of re
tangular topology, using the neighbourhood kernel `bubble',

(where the neighbourhood fun
tion refers to the set of array points around the

node). WEBSOM required a di�erent setting for � (the 
ell ve
tor adaptation

parameter) 
ompared to the other two methods to minimise the quantisation

error of the topologi
al mapping from the input spa
e to the 9x9 map. Table 3


ompares the settings for the TreeGCS for ea
h method of word 
ontext ve
-

tor generation. We set the parameters to produ
e the `best' quality 
lusters as

judged by the authors, see [7℄ for a dis
ussion of sele
ting parameter 
ombina-

tions. The seven-dimensional ve
tor evaluation required di�erent parameters

from the 90-dimensional trial.
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5 Results

We detail the 
luster topologies produ
ed by TreeGCS, SOM and the dendro-

gram for ea
h 
ontext ve
tor methodology.

5.1 Ritter & Kohonen Method

� From the dendrogram 
lustering using the R & K average 
ontext ve
tors,

the 25 most similar words are:

fsystem union output industry substantial poli
ies exports european pri-

vatization 
ountries se
tor in
ation per
ent e
onomi
 foreign �nan
ial re-

sour
es government growth large e
onomy unemployment gdp years eug.

These words index the 25x25 matrix used to evaluate the average 
ontext

ve
tor methodologies.

� For the TreeGCS hierar
hy generated using the R & K average 
ontext ve
-

tors see �gure 7. The words in bold are the 25 most similar words identi�ed

by the dendrogram generated using the R & K average 
ontext ve
tors and

are used to form the 25x25 matrix with ij set to 1 where word

i

and word

j

are in the same TreeGCS 
luster.

� For the SOM 
luster topology (see �gure 8), again the 25 most similar words

from the dendrogram are highlighted in bold.

5.2 WEBSOM

� From the dendrogram generated using the WEBSOM average 
ontext ve
-

tors, the 25 most similar words are:

f
ountries european budget exports industry se
tor agri
ultural industrial

large system trade output gdp �nan
ial eu e
onomi
 e
onomy government

growth in
ation per
ent privatization unemployment years foreigng. These

words form the indi
es for the 25x25 matrix.

� See �gure 9 for the TreeGCS hierar
hy generated using the WEBSOM av-

erage 
ontext ve
tors. The words in bold are the 25 most similar words

identi�ed by the dendrogram generated using the WEBSOM average 
on-

text ve
tors.

� For the SOM, the topology is illustrated in (see �gure 10), again the 25

most similar words from the dendrogram are highlighted in bold and form

the 
o-o

urren
e entries in the 25x25 matrix.
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5.3 Our methodology

� For the dendrogram generated using average 
ontext ve
tors produ
ed by

our method, the 
luster of the 25 most similar terms is:

f small reform per
ent exports gdp output system agri
ultural market bud-

get industrial �nan
ial foreign large industry privatization in
ation growth

e
onomi
 eu e
onomy government trade unemployment energyg. These words

index the matrix.

� For the TreeGCS hierar
hy generated from average 
ontext ve
tors pro-

du
ed by our method see �gure 11. The words in bold are the 25 most

similar words identi�ed by the dendrogram generated from the average 
on-

text ve
tors produ
ed by our method. The 
o-o

urren
e statisti
s form the

matrix entries.

� For the SOM the 
luster topology is shown in �gure 12. The 25 most sim-

ilar words from the dendrogram are shown in bold. We have also in
luded

the Sammon mapping (see [13℄) for the SOM (See �gure 13). The Sammon

mapping maps the n-dimensional input ve
tors onto 2-dimensional points

on a plane.

6 Analysis

6.1 Three Methods for Context Ve
tor Generation

From table 4, the TreeGCS 
luster produ
ed from our method for average 
on-

text ve
tor generation is most similar to both the dendrogram and the human


luster sets. When we redu
e the TreeGCS stru
ture to level 4 for equality

with the shallowest TreeGCS stru
ture, our ve
tor generation method is even

more similar to both the dendrogram and human 
lusters.

The TreeGCS stru
tures generated from 90-dimensional ve
tors emulate hu-

man 
lusterings more 
losely than dendrograms from the seven-dimensional

ve
tors. The higher dimensionality ve
tors in
rease word ve
tor orthogonal-

ity; a prerequisite for the `bag of words' average 
ontext ve
tor generation

approa
h. It is imperative that the ve
tors as
ribed to the individual words

in the text 
orpus imply no ordering of the words so text pro
essing is based

purely on the pro
essing of sequen
es of words. For seven dimensional ve
-

tors the Eu
lidean distan
es are altered between the 
ontext averages when

di�erent ve
tors are initially assigned to di�erent words. This is parti
ularly

important for low frequen
y words where the 
ontext average is biased by the

ve
tors assigned. Even for words o

urring greater than 10 times, the ve
tor
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assignment in
uen
es the similarities. Kaski [10℄ showed that there is a dire
t


orrelation between ve
tor dimensionality and orthogonality - the higher the

dimensionality the greater the orthogonality. We empiri
ally evaluated various

dimensionalities for 
onsisten
y with respe
t to 
luster 
ontent when di�erent

ve
tors are initially as
ribed to the words in the 
orpus. We used the dendro-

gram to pinpoint the most similar 25 words. We found that the 
luster sets

were identi
al for 90-dimensional ve
tors over a set of experiments but varied

for all dimensionalities tested below 90. The higher dimensionality spreads the

ve
tors more a
ross the input pa
e allowing a more a

urate di�erentiation of


lusters. We feel similar methods, using self-organising maps or growing 
ell

stru
tures, should use ve
tors of this dimensionality or greater to ensure or-

thogonality and spread and to maintain 
onsisten
y and stability of the lexi
al


lusters regardless of initial word-ve
tor assignments.

With respe
t to the size of the 
ontext window, we feel that our size seven-


ontext window produ
es superior quality TreeGCS 
lusters to WEBSOM's


ontext window of size three. The TreeGCS 
lusters produ
ed from the aver-

age 
ontext ve
tors produ
ed by our method emulate both the nearest neigh-

bour (dendrogram) and human generated thesaurus more a

urately than the

TreeGCS 
luster produ
ed from the WEBSOM average 
ontext ve
tors. The

vast majority of terms from the dendrogram and MS Bookshelf are in the

three 
lusters (see �gure 11) for our ve
tor generation method but are spread

a
ross four 
lusters with many of the other words also within these 
lusters

for the WEBSOM method of ve
tor generation (see �gure 9).

6.2 TreeGCS versus SOM Clustering Comparison

For all three evaluations in se
tions 5.1, 5.2 and 5.3, the top 25 words from

the dendrogram are spread a
ross the SOM (as 
an be seen from the spread of

bold text in �gures 7, 9 and 11) but tend to be in 
losely related 
lusters in the

TreeGCS hierar
hy with just the odd ex
eption (the bold text o

urs in 
lus-

ters that are near neighbours in the hierar
hy). For example, for our method

(see �gure 11), the dendrogram words, shown in bold text, are predominantly

in three 
lusters and these 
lusters are very 
losely related. Only `industry' and

`unemployment' are 
lustered elsewhere. With respe
t to Eu
lidean distan
e,

the TreeGCS emulates the nearest neighbour approa
h of the dendrogram far

better than the SOM. The Sammon mapping produ
ed from the SOM using

our method to derive the 
ontext ve
tors is extremely distorted (see �gure 13).

SOMs are 
riti
ised in the literature [1℄ for distorting high dimensional inputs

when they map onto the 2-dimensional representation.
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7 Con
lusion and Future Work

We feel that our method, 90-dimensional ve
tors, symbol fa
tor of 0.4, 
on-

text window of seven is superior to the R & K and WEBSOM methods. Our

method for 
ontext ve
tor generation enables TreeGCS to be more similar

to both the dendrogram (Eu
lidean distan
e) and the human generated the-

saurus than either the R & K or WEBSOM approa
hes. We note that the


orpus e�e
ts the similarity of the 
omputer generated stru
tures against a

human thesaurus. The human thesaurus en
ompasses general word meanings

while the text 
orpus may be very spe
i�
 so the similarity of the 
omputer

generated approa
hes to the human 
lusters is a�e
ted and may appear low.

We also demonstrated that the TreeGCS algorithm emulates Eu
lidean ve
tor-

distan
e based 
luster sets more faithfully than the SOM algorithm. Therefore,

we feel the optimum approa
h for synonym 
lustering of the methods evalu-

ated is to generate the average 
ontext ve
tors using our method and train

these in to the TreeGCS 
luster algorithm. TreeGCS not only emulates the

nearest neighbour and human generated 
lusters more faithfully, it forms dis-


rete 
lusters and dynami
ally forms a lexi
al hierar
hy.

There are two main drawba
ks to our 
urrent method. The �rst is the inability

to disambiguate words. All senses of a polysemi
 word are averaged together

during the 
ontext average formation, distorting the averaged 
ontext ve
-

tors produ
ed. We intend to improve this by in
luding part-of-spee
h tagging

to di�erentiate identi
al words whi
h represent di�erent parts-of-spee
h, for

example spring: noun, a water sour
e and spring: verb, to jump. However,

autonomously di�erentiating word senses is 
urrently intra
table and relies on

a knowledge engineer to tag the senses.

The se
ond main drawba
k lies in the underlying GCS algorithm and is a

speed problem. The algorithm is dependent on the winner sear
h - �nding

the best mat
hing unit. This involves 
omparing the input ve
tor to the ve
-

tor atta
hed to ea
h 
ell, 
al
ulating the di�eren
e for ea
h ve
tor dimension.

This must be repeated for ea
h ve
tor in the input ve
tor spa
e to 
omplete

ea
h epo
h. This sear
h is therefore, (number of input ve
tors * ve
tor di-

mensionality * number of 
ells) � O(n

3

) for ea
h GCS epo
h. For the small

vo
abulary evaluated in this paper the speed problem was not apparent. How-

ever, for a large 
orpus, with an extensive vo
abulary the speed is slow and

we need to speed the algorithm, redu
e the running time and hen
e remove

the bottlene
k.
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9 Tables

9.1 Table of the methodology settings

Method Ve
tor Dimensionality Context Window Symbol Fa
tor

R+K 7 3 0.2

WEBSOM 90 3 0.2

Our's 90 7 0.4

Table 1

Table 
omparing the settings for the 
ontext ve
tor generation in ea
h of the three

methods evaluated.

9.2 Table of the SOM settings

Method � Radius � for Radius for

for x epo
hs for x epo
hs next y epo
hs next y epo
hs

R+K 0.9 for 3000 10 for 3000 0.5 for 27000 3 for 27000

WEBSOM 0.75 for 3000 10 for 3000 0.5 for 27000 3 for 27000

Our's 0.9 for 3000 10 for 3000 0.5 for 27000 3 for 27000

Table 2

Table 
omparing the parameter settings for the SOM algorithm to generate the map

for ea
h of the three 
ontext ve
tor generation methods evaluated. � is the initial

learning rate parameter whi
h redu
es to 0 during training and the radius is the

neighbourhood of 
ells that are adapted in the SOM adaptation phase. The radius

iteratively redu
es to 0 during training.

9.3 Table of the TreeGCS settings

Method �

bmu

�

i

� Cells Max Insertion Deletion Epo
hs

Conns

R+K 0.1 0.01 0.001 81 25 10 810 30000

WEBSOM 0.02 0.002 0.0002 81 25 10 810 30000

Our's 0.02 0.002 0.0002 81 25 10 810 30000

Table 3

Table 
omparing the parameter settings for the TreeGCS algorithm to generate the


luster hierar
hy for ea
h of the three 
ontext ve
tor generation methods evaluated.

N.B. Conns is an abbreviation for 
onne
tions.
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9.4 Table of the evaluations

Method Dendrogram Dendrogram Human Human

Level 4 Level 4

R+K 70 70 10 10

WEBSOM 88 100 22 26

Our's 93 253 32 74

Table 4

Table 
omparing the TreeGCS 
lusters produ
ed from ea
h of the three ve
tor

generation methodologies against the dendrogram and human generated 
lusters.

We produ
ed NxN matri
es of all words to be 
lustered: the 25 most similar words

from the dendrograms for the dendrogram 
omparison and the 51 
luster words for

the human 
omparison. If two words (word

i

word

j

) 
o-o

ur in a 
luster then we

inserted a 1 in the respe
tive matrix otherwise we inserted a 0. We then 
ounted

the number of 1s in the 25x25 matrix for ea
h ve
tor methodology, where a word

pair 
o-o

ur in both the dendrogram 
luster and the TreeGCS 
luster for that

ve
tor methodology. The 
ounts are listed in 
olumn 2. We redu
ed all trees to level

4 shown in �gures 7, 9 and 11 for equality and repeated the evaluation with the


ounts listed in 
olumn 3. We overlaid the human 51x51 matrix against ea
h of the

three 51x51 TreeGCS matri
es and 
ounted the number of overlaid 1s where a word

pair 
o-o

ur in both the human and TreeGCS 
lusters, listed in 
olumn 4. Again

we repeated the evaluation for the level 4 trees and the 
ounts are given in 
olumn

5.

10 Captions

Figure 1: Figure illustrating the moving word window. The initial 
apital let-

ter will be 
onverted to lower 
ase to ensure the `he's mat
h. Both instan
es

of `he' are represented by the same ve
tor. The ve
tors asso
iated with ea
h

word are 
on
atenated to form the 
ontext ve
tor for the target word `he'.

Figure 2: Figure illustrating 
ell insertion. A new 
ell and asso
iated 
on-

ne
tions are inserted at ea
h step.

Figure 3: Figure illustrating 
ell deletion. Cell A is deleted. Cells B and C

are within the neighbourhood of A and would be left dangling by the removal

of the �ve 
onne
tions surrounding A so B and C are also deleted.

Figure 4: Figure illustrating 
luster subdivision. One 
luster splits to form

two 
lusters and the hierar
hy is adjusted. The leftmost 
luster then splits

again.

Figure 5: Figure illustrating 
luster deletion. The rightmost 
ell 
luster is
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deleted during an epo
h (step 2) - this leaves a dangling pointer. The node

with the dangling pointer is removed (step 3), leaving redundan
y in the hi-

erar
hy. The redundan
y is removed in the �nal step.

Figure 6: The 
ells in the GCS layer are labelled with the words they rep-

resent.

Figure 7: Ritter & Kohonen Methodology - TreeGCS 
luster. The �gures in

bold indi
ate the top 25 words sele
ted by the dendogram in ea
h 
luster.

Figure 8: Ritter & Kohonen Methodology - SOM mapping. The words in

bold indi
ate the top 25 words sele
ted by the dendogram

Figure 9: WEBSOM Methodology - TreeGCS 
luster. The �gures in bold

indi
ate the top 25 words sele
ted by the dendogram in ea
h 
luster.

Figure 10: WEBSOM Methodology - SOM mapping. The words in bold indi-


ate the top 25 words sele
ted by the dendogram

Figure 11: Our Methodology - TreeGCS 
luster. The �gures in bold indi
ate

the top 25 words sele
ted by the dendogram in ea
h 
luster.

Figure 12: Our Methodology - SOM mapping. The words in bold indi
ate

the top 25 words sele
ted by the dendogram

Figure 13: Figure illustrating the Sammon map generated for 90 dimensional

ve
tors with 
ontext window = 7.
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11 Figures
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