Short-Term Prediction of Traffic Flow Using a Binary
Neural Network

Victoria J. Hodge? Rajesh Krishnan®, Jim Austin®, John Polak®, Tom Jackson?

®Dept of Computer Science, University of York, York, UK

PCentre for Transport Studies, Imperial College London, London, UK

{victoria.hodge@york.ac.uk, rajesh.k@imperia.ac.uk, jim.austin@york.ac.uk, j.polak@imperial.ac.uk,
tom.jackson@york.ac.uk}

Abstract.

This paper introduces a binary neural network-based prediction a gorithm incorporating both spatial and temporal
characteristics into the prediction process. The agorithm is used to predict short-term traffic flow by combining
information from multiple traffic sensors (spatia 1ag) and time-series prediction (temporal lag). It extends
previously developed Advanced Uncertain Reasoning Architecture (AURA) k-nearest neighbour (k-NN) techniques.
Our task was to produce afast and accurate traffic flow predictor. The AURA k-NN predictor is comparable to
other machine learning techniques with respect to recall accuracy but is able to train and predict rapidly. We
incorporated consistency eval uations to determine if the AURA k-NN has an ideal agorithmic configuration or an
ideal data configuration or whether the settings needed to be varied for each data set. The results agree with previous
research in that settings must be bespoke for each data set. This configuration process requires rapid and scalable
learning to allow the predictor to be setup for new data. The fast processing abilities of the AURA k-NN ensure this
combinatoria optimisation will be computationally feasible for rea-world applications. We intend to use the

predictor to proactively manage traffic by predicting traffic volumes to anticipate traffic network problems.

Keywords - binary neural network; associative memory; k-nearest neighbour; time series,
spatio-temporal; prediction

Nomenclature

Variable = onefeature of atraffic data vector, for example the flow value from a sensor.

Attribute = one time slice of one variable, for exampl e the flow value from a sensor five minutes ago.

The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-014-1646-5

1 Introduction

Intelligent Decision Support (IDS) systems are an important computerised tool in many
problem domains. It is essential that any decision support system provides “intelligence”
to help with good decision making. IDS systems are used to analyse information,
establish models and support the decision making process. An IDS is predicated on
providing a supportive role rather than entirely replacing humans in the decision-making
process [1]. IDS has devel oped incorporating aspects from a broad spectrum of domains
such as: expert systems; artificial intelligence; database technologies and, data mining
and knowledge discovery.

The aim of our work isto provide an IDS tool to assist traffic network operators
to optimally manage traffic as a part of the FREEFLOW project [2]. Thistool aimsto use
neural-network-based pattern matching techniques to provide short-term predictions of
traffic volumes to the traffic operators and thus help them to select the most appropriate
course of action. The proposed IDS tool needsto operate in near “rea time” and
dynamically; providing predictions prior to the next data collection, where traffic data are
updated every 5-15 minutes. Traffic monitoring and control systems produce large
volumes of data which infers that traditional relational databases are not suitable for
online traffic applications such asthe IDS. Also, traffic data distributions are frequently
non-stationary; hence, any method needs to be able to accommodate non-stationary data
while still maintaining fast, flexible processing. The proposed methodol ogy could be
extended to other monitoring applications that use spatially distributed sensors where
nei ghbourhoods of sensors exist and where temporal characteristics are important.

In the remainder of this paper, we provide a concise review of traffic flow and
neural network-based prediction methods in section 2, section 3 discusses our proposed
binary neural network predictor, sections 4 provides an evaluation of our proposed
prediction method against aternative machine learning methods. The evaluation analyses
the prediction accuracy; and examines whether there is a single algorithm configuration
and whether there is a single data configuration that performs best with respect to
prediction accuracy. The evaluation is focused on the timing analyses of the training and
the execution time of our proposed technique. We then analyse the results of the

evaluationsin section 5 and provide our conclusionsin section 6.

2 Short-term Prediction

Thefocus of our work in this paper was to predict future traffic flows over short-term

intervals using time series prediction [3]. The predicted flow may then be displayed to the

2

traffic operator to allow them to visualise how the traffic will develop over the near future
and to anticipate traffic problems. We provide a selective review of time series prediction
literature with particular reference to vehicle flow prediction and neural network-based
predictors.

Well-known short-term prediction algorithms can broadly be classified into
univariate and multivariate approaches. Simple univariate prediction models predict the
value of avariable as afunction of the same variable observed in the immediate past.
Ding et al. [4] used support vector machines [5] to model future traffic flows at agiven
location as a function of past flow observations at the same location. The ARIMA
methodology introduced by Box and Jenkins[6] isa popular statistical approach for time
series prediction. Hamed and Al-Masaeid [7] used an ARIMA time-series model to
predict 1-minute future traffic flows. Williams et a. [8] added seasonal differencing to
the ARIMA model to predict 15-minute-ahead flows with a periodicity of 24-hours. More
recently, Ghosh et al. [9] used a seasonal ARIMA model calibrated using Bayesian
methods to predict traffic flows. However, the ARIMA method requires time consuming
manual configuration for each problem scenario to obtain accurate prediction results. In
addition, it is not easy to incorporate additional explanatory variables other than the
observed variablein the ARIMA framework.

In contrast, a multivariate approach uses datafrom several locations for traffic
prediction. The traffic flow on aroad network is a spatial-temporal process. The traffic
variables observed at a given location are correlated with the present and past values of
the same traffic variables observed at upstream or downstream locations. Hence, traffic
prediction models often use observations from neighbouring sensor locations as
explanatory variablesto predict the value of a sensor variable at a given location.

Neura networks are often used for traffic variable prediction but many neural
networks require intensive tuning to ensure optimal performance. Amin et al. [10] used a
Radial Basis Function (RBF) neural network to perform traffic flow prediction. Inan IDS
application, the neural network would need to be retrained every time new data became
available whichislikely to be daily. It isalso likely that different parameter sets would be
required for different locations on the road network. Thistraining and retraining
introduces high computational complexity. For example, Vlahogianni et al., [11]
demonstrated a genetic agorithm for optimising Multi-Layer Perceptrons (MLPs) with
respect to the learning settings and the hidden layer topology. The optimised neural
network was then used for short-term traffic flow prediction. Abdulhai et al. [12]
demonstrated a similar approach for traffic flow prediction by using genetic algorithms to
tune neural networks but the underlying MLP incorporated temporal lag by using

multiple links between neurons. These additional links introduced atime delay between
network layers to capture the evolution of vehicle flow over time.

Martinetz et al. [13] used the neural gas network for chaotic time series
prediction. Neural gas extends both k-means clustering and Kohonen neural networks.
Predictions are generated from learning input to output mappings where the output is the
future value associated with the training example (input value). Zhang et a. [14]
devel oped a Bayesian network model to describe the traffic flows. Their approach used a
Gaussian Mixture Model to approximate the joint probability distribution within the
Bayesian network nodes following dimensionality reduction by Principal Component
Analysis.

Kindzerske and Ni [15] are one of a number of authorsto realise Y akowitz' s[16]
developmental work by applying non-parametric regression, the k-NN algorithm, to time
series prediction. Kindzerske and Ni [15] represented the current snapshot of the traffic
sensors as a vector and compared this vector against historical vectors. The best matching
historical vectors are then combined to generate a prediction. Krishnan and Polak [17]
enhanced this by introducing temporal lag in their k-NN approach so that each of the
sensor’ s variables formed atime series and the set of all time-series were concatenated to
produce a vector covering the spatial distribution of sensors.

In asimilar manner, Kamarianakis and Prastacos [18] introduced a spatio-temporal
extension of ARIMA to predict future flows as afunction of historical flows from agiven
location and its upstream locations.

The accuracy of prediction depends on both the appropriateness of the data
configuration and the correct implementation of the machine learning tool. For spatio-
temporal data, smply incorporating spatially distributed sensors and attributes may
actually generate predictions that are worse than non-spatial models unless the data from
these neighbouring locations influence the predicted value. Kamarianakis and Prastacos
[18] showed that injudicious use of datafrom neighbouring locations may actually
decrease prediction accuracy. They showed that using relatively few, dispersed sensors
failsto account for the spatial dependencies. Conversely, they found that as the number of
sensorsincreases, the prediction accuracy may improve significantly if spatio-temporal
relationships are captured.

To summarise, traffic prediction models need to (1) accurately model historical
traffic flow patterns, (2) account for both the intra-day and inter-day variability in traffic
variables, (3) be able to incorporate both temporally and spatialy distributed information,
where appropriate, to improve prediction accuracy and (4) generate predictions rapidly

between data collections.

2.1 Our approach

In this paper, we develop afast and scalable neural network-based k-NN predictor
implemented using the AURA binary neura architecture. It is adapted from the
methodology described in [17] which incorporated temporal and spatial lag into standard
k-NN traffic flow prediction.
e The AURA k-NN has only previously been described for non-temporal data.
In this paper, we extend the AURA k-NN method to encompass time series
processing. Traffic data change over time which necessitates a temporal

component for prediction.

e The AURA k-NN has aso only been used previoudy for pattern match so we
extend the AURA k-NN to produce multivariate short-term predictions to
alow future traffic flows to be estimated.

The resultant method predicted future traffic flows by matching a current time
series pattern against historical data patterns and using these matching time seriesto
predict either how the current traffic state will develop over time or what may happen if a
particular control mechanism isimplemented. The methodology described isfast, flexible
and satisfies the four criteria above. It also has wider application to other time series
prediction tasks, beyond the prediction problem addressed in this paper, for example,
[19], [20].

3 Binary Neural Network for prediction

The objective for the neural network-based pattern matching method wasto predict the
future traffic flows to alow the traffic operator to visualise how the traffic situation will
develop. The AURA k-NN method identified a set of historical time periods when the set
of traffic observations on the road network were most similar to the current observations.
It then used thisinformation to produce a prediction of the future traffic flow by

averaging the flow development across the set of matches.

3.1 AURA k-NN

K-NN is a honparametric pattern matching technique known to be robust and flexible
and allows the predictor to be updated continuously. However, a drawback of
conventional k-NN isits speed, as it becomes very slow for large problems. This
drawback is overcome by using the AURA neura network technique to underpin the k-
NN. Using AURA means that the AURA k-NN can perform up to four times faster than
the standard k-NN [21]. AURA isagroup of techniques designed for high speed search
and match operations in large data sets. The foundation of AURA isabinary Correlation

5

Matrix Memory (CMM): abinary matrix used to store and retrieve patterns [22]. In the
AURA Kk-NN developed previoudy [21, 23, 24, 25], each column of the CMM was a set
of attribute observations for arecord (pattern) and each row indexed an attribute value or
aquantised range of values. AURA appliesinput patterns to the CMM to act as a cue to
retrieve similar output patterns. We extended the approach to match time-series vectors
and then to generate short-term predictionsin this paper. The details of the AURA k-NN

implementation are given in the following text.

3.1.1 Time Series

In the traffic domain, the AURA k-NN can process a broad spectrum of traffic variables
such as vehicle counts, vehicle speeds, bus timetable adherence, traffic signal settings,
congestion metrics, roadworks data, events data, and weather data. In this paper, we used
flow and occupancy data from sensors located in the roads. Flow is the number of
vehicles passing over the sensor during unit time and occupancy is the percentage of time
vehicles are present over the sensor during a specific time period.

For traffic prediction, the system must incorporate time: traffic data are dynamic
and show recurring patterns with respect to time. We describe how we accommodated
temporal aspects into the pattern match.

Given the current set of observations, X, from the set of traffic sensors and a
dataset of historical records { X}, k-NN identifies the k nearest neighbours of X, in { X}
using a distance metric. In this paper, the data records were time-series representations of
spatialy distributed sensors to incorporate trend similarity and spatial awarenessinto the
prediction approach. To produce the time series, the AURA k-NN effectively buffered
historical data and accumulated datafor a preset time interval, PT. It always preserved the
temporal ordering of the data, thus, Buffer, = { Buffer,,: t € PT} represents the time series
buffer of variable v of the data. The time-series for record X, which we call X,'> becomes

equation 1:
TS _
Xn ~ = {X1t-3, X1t-2, X1t-1, X1t, X2t-3, X2t-2,- - - Xnit-3, Xnt-2, Xnt-1, Xt} (1)

for PT of four time lags {t-3, t-2, t-1, t}. Theresults of our evaluationsin section 4 show
that the number of time lags needs to be tuned for each data set.

For example, for two sensors reporting two variables: flow and occupancy, where
sensor; has readings of 51, 62, 55, 68 for flow and readings of 15.0, 18.0, 21.0, 29.0 for
occupancy for four time lags {t-3, t-2, t-1, t} respectively and sensor, has flow readings
of 38, 38, 56, 58 and occupancy readings of 15.0, 16.0, 23.0, 25.0 respectively, then X"

isgivenin equation 2:
X.'° ={51, 62, 55, 68,/ 15.0, 18.0, 21.0, 29.0, | 38, 38, 56, 58, | 15.0, 16.0, 23.0, 25.0} (2)

6

where the vertical bars illustrate the sections of the pattern with each section representing

the time series buffer for one sensor variable (flow or occupancy here).

3.1.2 Learning

The CMM isused in AURA to store representations of al data. The CMM isanmXx n
binary matrix that learns the N recordsin the data set. During learning, the CMM forms
an association between an input pattern and an output pattern I,— O, for each record n

wherel,and O, € {0,1} asshown infigure 1.

T
[1 0 0o 0o 0]Op

5
%%
o

Sensor1_Flow_t-3g

Sensor1_Flow_t-2

Sensor1_Flow_t-1

Sensor1_Flow_t

Sensor1_Occ_t-3 @

Py
@
..oOOHOOOHOOOHOOOOOOOHHOOOOOOHOO‘

Sensor1_Occ_t-2

e0j0cO0OROCOROOCOROOO|ICOOCORROOOO[COR OO
®e0lcocoocoolcoocooojcoocoojcococoojcoocoo/ocococod
®e0lcooooolcoocooOlPoocoolcoocoolcoocoojooooo (o
®®ooooolpoocoolpoooolooocoojooocoojooooo (o
0000000000000 OO[CO0OOPOOOOCOOO0
eecocOoRrOCORrROOCOROOOICOOCORROOOOlCOROO
®0lcooOR|/CcOOROCOOROOCROOCOCOORO/COROCQ
®0looRrOOC/OCOROOOROOOROOOCOROOOOCOROCQ
®0lo0oORrROOCOROOCOOOR/COOORROOOOCOOR O
00 L OO0 OOIOPROOOROOOOCOOROOOROOOCOOO R

Etc.

Figure 1. Showing the CMM storing the first association 1;xOq on the left and a CMM trained with
five associations on the right.

Theinput pattern (1)) represents the concatenated set of all time-series buffer
values for all variables of aparticular record X, and indexes matrix rows. In the
remainder of this paper, each value of each time series buffer of each variableisreferred
to as an attribute. There are 16 attributes in equation 2. The associated output vector (Oy)
uniquely identifies that record and indexes the matrix columns. Thus, the set of attribute
values for record n are associated with a unique identifier for therecord. Infigure 1, lyis
stored in the leftmost column of the CMM and is uniquely indexed by O, (10000) which
activates the leftmost column.

The CMMs require binary input patterns for computational efficiency while
training and matching; so numeric attributes must be quantised (binned) to allow mapping
to abinary pattern [21]. Quantisation maps a continuous-valued attribute into a smaller
("finite") set of discrete symbols or integer values. Each attribute is quantised over its full
range of values and mapped to a set of bins. This alows each bin to index a specific and
unique row in the CMM. For example, for an integer-valued attribute with range 0-99 and
five bins then each bin would have width 20: bin, {0..19}, bin, {20..39} ...bin, {80..99}.

7

For area-valued attribute with range [0.0-100.0] and five bins then each bin would have
width 20: bing [0.0, 20.0), bin, [20.0, 40.0) ...bin, [80.0, 100.0]. Thus, for the sensor; and

sensor, above, the set of bin mappings for X,'* in equation 2 are given in equation 3:
Bins(X,'%) ={2,3,2,3,10,0,1,1,|1,1,2,4,|0,0,1, 1} (3)

In the AURA Kk-NN, each bin index maps to a binary representation to generate
the binary patterns for AURA. For an attribute with five bins, the five possible binary
representations are: biny = 00001, bin; = 00010, bin, = 00100 etc. To produce the input
vector |, to train into the CMM, the binary representations for all the attributes in the data
pattern are concatenated. The bin indexes for al attributesin X, are set to 1 while all
other bin indexes remain unset (0). The binary input vector I, derived from the bin
mappings in equation 3 is given in equation 4. Thisisthe input |earning pattern to be
stored in the CMM to allow the particular association I,x O, to be stored and retrieved

I» = {00100 01000 00100 01000 | 00001 00001 00010 00010 | 00001 ... } (4)

Each binary input pattern |, is associated with a unique binary output pattern O,
which has asingle bit set to index a single column in the CMM. This column thus
uniquely indexes the binary pattern I,,. For example, O, (10000) uniquely indexes lo
which isthe leftmost column in figure 1.

The CMM stores an association for all N records in the data set { X"5}. Thus, the
CMM represents {(1:X Oy), (12X 0Oy), ... (I,xOp)}. Learning is a one-pass process with one
learning step for each record in the data set. Hence, training israpid. CMM learning is

given in equation 5.

CMM= LNJ I, xQ
n-1 where U islogical OR ©)

.
11 %On js an estimation of the weight matrix W(n) of the neural network asalinear

associator. W(n) forms a mapping representing the association described by the nth
input/output pair. The CMM is then effectively an encoding of the N weight matrices W.
Individual weights within the weight matrix update using a generalisation of Hebbian
learning [26] where the state for each synapse (matrix element) isbinary valued. Every
synapse (matrix element) can update its weight independently and in paralldl.

Each I, has m bits set where misthe number of attributes (assuming no missing
values) and each |, is of length meb where b is the number of bins per attribute. Each O,
has 1 bit set and has length N. There are N associations (one per data record). Therefore,

mN 1
the CMM containsm x N set bits, i.e,, MON b possible bits are set in the CMM after

training. This allows a compact representation [27] to be used where each input pattern,

each output pattern and the CMM are represented by the indices of the set bitsonly. This
1

means that only P indices need to be stored for the CMM. Thisis similar to the pointer
representation used in associative memories [28]. This compact representation ensures
that retrieval, as described next, is proportional to the number of set bitsin both the
retrieval pattern and the CMM and isfast and scalable.

3.1.3 Retrieving the best matches

During retrieval, the CMM is searched to find the k best matches. Each query record is of
the same format as the records in the training data (see equation 2). For each new query
XqTS, aretrieval pattern Riscreated. Risformed from a set of parabolic kernels, with one
kernel for each attribute in XqTS. The kernels emulate Euclidean distance [21] to allow us
to emulate standard (Euclidean) k-NN. For each time slice for a particular variable, the
kernels areidentical but they may vary across variables according to the number of bins
assigned to that variable. For example, aflow variable may use a different number of bins
compared to an occupancy variable. In this paper, all attributes use an equal number of
guantisation bins and, hence, an equivalent kernel. The kernel density is estimated using

equation 6 for al attributes ain X,'> and an example kernel is shown in figure 2.
2 2
Kernel () = W%@ﬂ (i) - bing) (ma(b))*

)za (x3) | where a(x3) = 00))?

(6)
Where, max(b) is the maximum number of bins across all attributes, |bin(Xg) —bin(’€)| is
the number of bins separating the bin mapped to by this attribute value for the query
pattern (Xg) from the bin mapped to by this attribute value for the stored historical pattern

(Xg), and b(Xg) isthe total number of binsfor attribute x,.

A~

rd R

/ AN

0 9 L6 21 [24] i 24| 21} 16| 9 0

Figure 2. Showing the kernel values produced from equation 6 to approximate Euclidean Distance.

To emulate the scoring of Euclidean Distance, the kernelsfor al attributes are

concatenated. Each kernd is centred on the bin representing that attribute’ s value in the

guery record. This ensures that the query value itself receives the highest score and the
score reduces according to the distance from the query value. For an integer-val ued
attribute with range 0-99 and five bins then each bin would have width 20: bin, {0..19},
bin, {20..39} ...bin, {80..99}. Thus, if the query record value was 31 this would map to
bin, so the input vector element representing bin,; would be the centre of the kernel. The
highest value for this kernel (analogous to the dotted value of the kerndl in figure 2)
would be centred on bin;.

For Euclidean kernels, the retrieval pattern input to the CMM to retrieve the top k
matchesis iteratively given by equation 7:

R = R @ offset(Kernel (x,)), for all attributes x, ()

where offset() indexes attribute x;' s section of the input pattern R and ensures that the
kernel isadded to R, centred on the query value for attribute x, and @ is the concatenation

operator. Thus, each attribute indexes a defined set of elementsin R as shown in figure 3.

Sensor1_Flow_t-3 C

Sensor1_Flow_t-2

Sensor1_Flow_t-1

[
N
Sensor1_Flow_t C
Q

BinaryCMM storing
input-output
associations.

Each column
represents the
vehicle flows

at a set of sensors

for four consecutive

Sensor1_Occ_t-3 time slices.

Sensor1_Occ_t-2 (

Etc.

00 OCO0O0ORIOCOOCROIOCOOROICROOCICOORO|OCOR OO
00 OCOO0OROCOROOICOOORIOCOOORIROOOOOCOORD
00|00 OOIOPOOOROOOOIOOOROILOROO0CO OO

44 34 Summed Output Vector
1 0 Thresholded Vector

Concatenate
Kernels

og 00 OO OOPOOOOOROOOIROOOOIOCOOOROCOOR O
-‘t 00 OO0OROOIOCOROOOROOD|IPOOOOROOOOOOR OO

o8

Figure 3. lllustrating the application of kernelsto a CMM to find the k-nearest neighbours using
time-series vectors. The kernels are mapped onto an integer vector R, which is applied to the
binary CMM by multiplying the CMM rows by the integer values. The CMM summed output
vector isthresholded to retrieve the k best matches.

When Ris applied to the CMM to retrieve the best matches, the valuesin R,
multiply the rows of the matrix as shown in figure 3. If the bit is set to one in a particular
column, then the column will receive the kernel score for the corresponding row as given
in equations 7 and 8. The processisillustrated in figure 3. For Sensorl Flow _t-3,
columns 1 and 2 (indexing from O on the left) receive a score of 9 asthe set bit in the
respective columns aligns with the score of 9 in the input kernel. In contrast, the right
column receives ascore of 5 as the set bit in the right column aligns with the score of 5in

the input kernel.
10

To retrieve the best matching records, the columns (one column per record) of the
matrix are summed according to the value on the rows indexed by the query input pattern

R and the CMM produces a summed output vector Sas given in Equation 8.

ST:ZR o CMM ®

The summed output vector is then thresholded using L-Max thresholding [29] to
produce a binary thresholded vector T. L-Max thresholding is used in the AURA k-NN as
it retrieves the top L matches. After thresholding, T effectively lists the top L matching
columns which represent the top k (where k=L) matches; i.e, the k nearest neighbours.
Thisisasoillustrated in figure 3.

The overall retrieval timeis proportional to the number of set bitsin both the
retrieval vector and the CMM. If theretrieval vector is abinary vector, similar to I, used
in training, then retrieval from the CMM is a count of the number of exact matching
binned attribute values for every stored record n< N. If we assume that on average each
stored vector (matrix column) matches 50% of the input and we assume the set bits are

mN
equally distributed acrossthe rowsthenonly 2 bits are examined during retrieval

where mis the number of attributes. We performed recall accuracy investigations using a
number of different kernelsfor retrieval and using the Euclidean kernels significantly
improves recall accuracy compared to other approaches[30]. However, the accuracy
increaseis at the expense of a dight speed decrease compared to using asingle bit set
pattern. The Euclidean kernel excitesall CMM rows of the attribute if the kerndl is
centred on the middle bin and half of the rowsif centred on one of the extreme value bins.
If we assume that on average 75% of the rows are excited for each attribute and the bits
3mbN

are equally distributed acrosstherowsthen 4 bits are examined during retrieval.
=)

Thus, the kernel based AURA k-NN has runtime growth of ® 4) wheremb << N so

thisis approximately equal to growth proportional to O(n) where n isthe number of

records.

3.1.4 Prediction

For the prediction task in this paper using data arriving at 15 minute intervals from the
sensors, we retrieved the k top matches and then looked up the t+ 1 (+15 minute) or t+4
(+1 hour) sensor values for each of the k matches (these are stored in adatabase). Thet+1
(+15 minute) prediction is then the mean value of the set of t+1 values from the k nearest

neighbours and the t+4 (+1 hour) prediction is the mean of the t+4 values.

11

4 Evaluation

We evaluated our AURA k-NN prediction method against a number of predictors
implemented using WEKA 3.6 software [31]. WEKA [32] is aJava GUI-based
application that contains a set of machine learning algorithms designed for data mining.
The algorithms can be used for tasks including data pre-processing, classification,
prediction and clustering. Note WEKA prediction isto 3 decimal places whereas AURA
predicts to integersto display to the traffic operator. The methods used were;

1. Standard k-NN [33] known as Instance Based learning (1BK) in WEKA 3.6 - we
used k=50 and k=10 in our analyses.

2. Multi-Layer Perceptron (MLP) Neural Networks are feedforward supervised
neural networks with at least one layer of nodes between the input nodes and output
nodes. The network links flow forward from the input to the output layer. The
network is trained by the backpropagation learning algorithm [34] using historical
data. Training creates amodel that maps inputs to outputs and this model can then be
used to predict the output when new datais applied. MLPs have been used for traffic
prediction on a number of occasions. For optimum results, the parameters of the MLP
are intensively tuned; for example, using a genetic algorithm [11]. However, this
intensive tuning processis too slow for an on-line application such as the IDS.
Nevertheless, we ensured that we evaluated at least as many parameter sets for the
MLP as we evaluated for the AURA k-NN. For al evaluations, the MLP used
learning rate decay, train and validate (using 30% of the training data for validation)
and we varied the key MLP parameters: learning rate and momentum. All other
settings were WEK A defaults as these produced the best prediction accuracy. An
example WEKA MLP configuration islisted in the Appendix showing the settings
that we varied. Learning rate determines the amount the network weights are updated
astraining proceeds. Decaying the learning rate “ may help to stop the NN from
diverging from the target output as well asimprove general performance’. Using a
train and validate regime ensures that the training data are split between actual
training data and validation data. Validation data are used to test the trained network
and stop training before performance degrades.

3. Support Vector Machine (SVM) isimplemented as SMOreg in WEKA 3.6 and
implements the support vector machine for regression [31][35]. Support vector
machines map the data to a high dimensional feature space and generate linear
boundaries in the feature space to represent the non-linear class boundaries. SMOreg
implements sequential minimal optimisation to train the support vector regression and
al attributes are normalised. Again, we ensured that we evaluated at least as many

parameter settings for the SVM as we evaluated for the AURA k-NN. The SVM used
12

an RBF kernel and we varied the complexity. Labeeuw et a. [36] assessed various
machine learning techniques for the similar task of predicting traffic speeds and
congestion. They concluded that SVMswith an RBF kernel had the highest accuracy
of the methods evaluated so we used it here. All other settings were WEKA defaults
as these produced the best prediction accuracy. An example WEKA SVM
configuration islisted in the Appendix showing the settings that we varied.

4. Least Median Squares (LM S) regresson —In WEKA, the LM S regression
functions are generated from random subsamples of the data. The LM S regression
with the lowest median squared error isthen used as the final model. Our
implementation used all default settings.

The performances of the various configurations of the AURA k-NN were
compared against each other based on their prediction accuracy over an independent test
set (out-of-sample accuracy) using the metricsin equations 9, 10 and 11. The MLP, SVM
and LMS provided baseline accuracies to allow us to compare the standard k-NN and

AURA k-NN prediction accuracies using the metric in equation 11.

n
z Xi=F 100
i=1 i

Mean Percentage Error (MPE) = n 9)

- measures the bias (over-estimating or under-estimating)

n

z 7Xix_ Fi xlO({

i=1 i

Mean Absolute Percentage Error (MAPE) = n (20)

- measures the goodness-of-fit

Root Mean Squared Error (RMSE) = (12)

- Measures the absol ute error — thisis the best metric for comparing different methods.

4.1 Data

In our application the IDS is required to run in near real-time so we need to minimise the
data pre-processing. The only pre-processing performed was to clean the two data sets
used using asimple rule: Univariate Screening given in Krishnan [37]. If ahistorical
record contained an erroneous val ue then the entire record (one vector in the training set)
was removed.

For the WEKA & gorithms evaluated, the training data comprised the data vector

as per equation 2 associated with the t+x value for the sensor to be predicted (the class
13

value). For +15 minute prediction, the training vector was the vector from equation 2 with
the t+ 1 sensor reading as the class value. Accordingly, for +1 hour prediction, the
training vector was the vector from equation 2 with the t+4 sensor reading as the class
value. To generate the prediction, the algorithm predicted the class value from the query
data vector. The algorithms were tested using two traffic data sets from central London in
Russell Square and Marylebone Road.

4.1.1 Data Set 1

AN 2 s 3 o= on 1 @ =
s X P § ¢ % ar [Tratic] z
—a £ /o 2 A s Pundes /5 %% 0= fue & e Tt T o
g % 4 S {501 ® N & Q ¢ ne e C e % 2
B : @ % ot 3 $
2 i &) oo E;
2 3 3
- % 3 e 20
st g % (,e«”’m {501 M 91’“‘.v. 9] i) =3 - 3
: i %‘x /> o o g % o s % L
e o %)
& b [Condon)
%) \ B
Q z % Ko
2 & 8% 3 &
P 008 =% 2 £ [N &
v&\a@ 3 e Yy % %, N
“% @
& %, 2 A 3 %Y
s, <
: % Fields %
thsrh 3 e i) 3
X Y g e,
: % y %
= <
- y = so
"ot Institute of o anon, O o % <
o o & (1 Notona! Z 5
"% o & Education £ 5 N
o > s O K
[oy ¢ @ e % %
% % N N roger S (&
IR K % o s 3 o
g o A% 4 A 2 g £y
£\ A % % s : 5 ¢ s
% %, % Birbeck 4 S 5 & \ gt
S\ S &2 s - B ™ %
% Colege o %
EN N @ @ : = 3 e i)
2 'S¢ s 3 5
A L N s 2 TR¥ 3
3 = 2 e
% \ o) g @
%, CIAN . B q"& e 2 3 2ds
N7 NN »* % @ =) - g g
& o 2
. [Rag) % S o o 2 [sor] %
S e ©, o > Tropical Medic = % % o g
o Street ©, 2 P - School of z w’ B ray's
% PoloeK's o B %, B508) Oriental and @ 3 2y S
(3 Yor e B % C Affican Studies 3 RS
~ o © s #g \
é c;% ear 11\ e & %g‘ 4,% Y I “: 3
& % %, [BiCtn08 Hoborn &
o L Y 'b% % % ‘Z%
2 o 3 j0d SU
& OV @ gand® 2
G [55e] ‘%@ @ 2
£ o Y 'i‘)! qeS €2010 Googie - M data @2010 Google,

Figure 4. The Russell Square corridor in central London (Source: Google Maps).

Data from seven sensors arranged in series along the Russell Square corridor
(southbound) in central London (see figure 4) was the first data set used for the prediction
experiment in this paper. The flows on the southernmost (downstream) sensor were
predicted. All sensors output two attributes: 15-minute flow values (which vary between
0-800) and 15 minute occupancy values (with datarange 0.0-100.0). The data were
obtained for the months of June, July and August 2007. Data from June and July were
used as the training set and data for August formed the test set. The training and test data

sets comprised only data from weekdays (Monday to Friday) with 3,840 training records
and 337 query records after cleaning.

14

4.1.2 Data Set 2

|d WeUBUHON

oS] =) il (o) Gardens ©2010 Google - Map data ©2010 Goagle,

Figure 5. Marylebone Road in central London (Source: Google Maps).

Data set 2 comprised data from six sensors on Marylebone Road (eastbound) in
central London (see figure 5) where the future flow values at the easternmost
(downstream) sensor were predicted. The six sensors output 15-minute flow values with
data range 0-1600. Training data were from May 2008 and 1st-13th June 2008 while test
data were from 16th-20th June 2008 (one week). Only the weekday data were used giving
2,976 training records and 480 query records. A severe traffic incident happened in
Marylebone Rd on 20th June from 18:59 to 21:01. We ran two analyses, one using all of
the test data from 16th-20th June and a second analysing data from the 20th June, the day
the incident occurred which comprised 96 records. The latter analysis provided an
indication of how well the various machine learning techniques performed on incident
data when the traffic flow would be anomalous and prediction is potentially more useful

to end-users.

4.2 Tests

We ran seven separate tests to: find the best AURA k-NN parameter settings; pinpoint the
best data configurations; compare the accuracy of the predictors; and, ultimately, evaluate
the training and query time of the AURA k-NN. Parameter setting is a combinatorial
search problem and both algorithmic and data-rel ated parameters may be varied. Hence,
we did not exhaustively test every possible parameter combination as this would be
computationally intractable. Instead, we analysed arange of data and algorithm settings
to evaluate both accuracy and consistency and whether we need to use bespoke settings
for each data set. Tests 1-3 use data set 1: the data for Russell Sg. in June, July and
August, 2007. Tests 4-7 use data set 2: the data for Marylebone Rd in May and June,

2008.
15

4.2.1 Test 1 - the best AURA k-NN configuration

Thistest was to investigate the best configuration with respect to theinternal parameters
of the AURA k-NN. These parameters were: the length of the time series (TS); the
number of bins (Bins); and, the k value for k-NN (k). We varied the setting of the
parametersin turn and counted the number of times each setting had the lowest RM SE

across the evaluations of that parameter. Theresults are listed in table 1.

Table 1. Table with count of the number of times each AURA k-NN parameter setting has the
lowest RMSE. The highest counts for TS, Bins and k are shown in bold.

TS Bins k

2(4|6|8(10|11|25{49|10| 25|50 100
RMSE-15mins|0|0|(0|4|3 |1 |0 |7 |O |O |11]|0
RMSE-60mins|0|0|(0|5|2 |6 |0 |2 |0 |4 |7 |0

The most consistent time series length and k-value are clear (TS=8 and k=50,
respectively). The number of quantisation bins to use was less clear. When predicting +15
minutes, 49 quantisation bins performed best. When predicting +1 hour, 11 bins generally
performed best as this has the highest winning count. However, the two best performing
configurations for +1 hour with respect to both MAPE and RM SE use 49 bins rather than
11 bins.

Test 1 indicated that optimising the algorithm configuration was important and
needed care.

4.3 Test 2 —the best data configuration

Test 1 evaluated the AURA k-NN settings so test 2 evaluated different data
configurations to find the optimal data configuration(s) for prediction with AURA k-NN.
In test 2, we used the best AURA k-NN configuration from test 1 (TS=8, Bins=49, k=50)
and evaluated the following data settings: the number of sensors (NS) to use, whether to
incorporate the attributes of the sensor, self, whose flow is being predicted (S) and
whether to incorporate the occupancy attribute (O). All evaluations used the flow attribute
(F). Each configuration was given alabel to allow it to be referenced in the text. The
results of test 2 are given intable 2.

Table 2 shows that there was a clear difference between the best and worst RMSE
for both +15 minute and +1 hour prediction. Configurations 1-6 and 1-7 performed best
with respect to both RM SE and MAPE.

From table 2, configurations 1-6 and 1-7 have higher M PE than the other
configurations indicating that they overestimate more while the other configurations
aternate between under and over estimations of larger magnitudes. The occupancy

attribute contributed to one of the two best performing configurations but is not a
16

necessity as the other best performing configuration did not use occupancy. Including all
sensors produced higher accuracy compared to limiting the number of sensors. Including
the self-sensor improved accuracy with the flow attribute only but did not improve
accuracy with both flow and occupancy attributes. Again, thisindicates that the data need
to be carefully configured.

Table 2. Table listing the MPE, MAPE and RM SE for the various data configurations of the
AURA Kk-NN. 15 indicates +15 minute ahead prediction and 60 indicates + 1 hour ahead
prediction. The highest prediction accuracy for each column is shown in bold.

AURA Kk-NN Configuration | MPE MAPE RMSE
Name |NS |[S|F |O |15 60 15 |60 |15 |60
1-1 4 O|Y [N |-334|-336|126| 15.2 | 65.7| 77.9
1-2 4 O|Y |Y |-357|-301)|128|154|66.0]| 77.7
1-3 4 1|Y |N |-295|-3.20| 124|154 | 65.5| 79.0
1-4 4 1|Y |Y |-318]|-347|12.7| 154 | 66.6 | 78.3
1-5 6 O|Y [N |-321|-395|125| 149|655 76.1
1-6 6 O|Y |Y |-378|-341|125]|14.8|65.3| 75.3
1-7 6 1]Y |N |-335]|-411|123|148|65.2| 76.1
1-8 6 1|Y |Y |-389|-398|125|15.0|65.9| 76.5
Predicted Flow vs Actual Flow Actual Flow vs Predicted Flow

800
Actual

700 A ~ Predicted
z 600 - LA R il X

8 ANy g AR A il ki
2 so| [T AT e M
T | % ! ‘] P"h’ |
g 8400 | | |t bt
% i | I b 1 |
& 300 § . - V]

/ Y 1 A

200 W \ 9

\ \ 100
0 200 400 600 800
1
Actual Flow Time (hours)

Figure 6. Scatter plot and line graph for the actua and predicted flow values for +15 minute
prediction (t+1) for AURA k-NN configuration 1-6.

The prediction results for configuration (1-6) are plotted in figures 6 and 7 against
the actual data values. The scatter plot and line graphsin figure 6 show the prediction
accuracy for +15 minute prediction and the graphsin figure 7 show the prediction
accuracy for +1 hour prediction. Thisillustrates where the prediction is accurate and
whereit isinaccurate across the time span of the test data. From figures 6 and 7, the
AURA k-NN tends to smooth transient spikes, particularly transient spikes where the
flow values suddenly decrease supporting our earlier conclusion that configurations 1-6

and 1-7 overestimate more.

17

Actual Flow vs Predicted Flow Actual Flow vs Predicted Flow

800 + B
—- Predicted

700 1 700 Actual |
5 600 600 1
. 3 : o
8 5q0 | Rt T U S RPN gy \
£ 0o | PARVER ARG M P
| W . ! { 1
£ 400 s) % | ‘ Vi
2 400 - | ' ‘ [
g 300 - i J B !
a 14 ! {7 1
200 4 1 Y LS v
200 7 y i V

-
o
o

100 -

o

0 100 200 300 400 500 600 700 800 o
Actual Flow Time (hours)

Figure 7. Scatter plot and line graph for the actual and predicted flow values for +1 hour prediction
(t+4) for AURA k-NN configuration 1-6.

4.3.1 Test 3 — comparison to other algorithms

Next, we took the two best performing data configurations (1-6 and 1-7) from test 2 and
compared AURA k-NN to the WEKA machine learning algorithms running these two
data configurations.

e AURA k-NN and standard (WEKA) k-NN : k=50.

e MLP config 1.6: learning rate = 0.4, decay = true, momentum = 0.3

e MLP config 1.7: learning rate = 0.5, decay = true, momentum = 0.4.

e SVM config 1.6: RBF Kernel, complexity = 50.0

e SVM config 1.6: RBF Kernel, complexity = 75.0.

Therecall accuracy results for configuration (1-6) arelisted in table 3 and the

resultsfor (1-7) are listed in table 4.

Table 3. Table comparing the recall accuracy of the various predictors with time series length 8,
flow and occupancy attributes and predicted sensor excluded (six sensors) for test 4 part 1. The
highest prediction accuracy for each row is shown in bold.

AURA k-NN_ 1-6 |K-NN|MLP|SVM |LMS
RMSE — 15 mins| 65.3 65.3 |68.1 [{69.4 |69.9

RMSE — 60 mins| 75.3 75.3 |80.5 |80.5 |85.7
For configuration 1-6, the AURA k-NN and the standard k-NN were the joint

best performing predictors for both +15 minute and +1 hour prediction compared to the

other approaches.

Table 4. Table comparing the recall accuracy of the various predictors with time series length 8,
flow attribute only and all sensors for test 4 part 2. The highest prediction accuracy for each row is

shown in bold.

AURA k-NN_ 1-7 | k-NN [MLP|SVM |LMS
RMSE — 15 mins| 65.2 65.3 |68.8 [{67.8 |69.2
RMSE — 60 mins|76.1 76.9 |81.1 {80.7 |86.5

18

The AURA k-NN was the best performing for both +15 minute and +1 hour
prediction for configuration 1-7, closely followed by the standard k-NN. The RMSE
varied for al agorithms between this data configuration and the previous indicating that
al algorithms need to optimise the data configuration

4.3.2 Test 4 — the best data and AURA k-NN configuration

Thefirst test of the AURA k-NN for data set 2 was to evaluate different configurations to
find the optimal configuration(s) for prediction. For Marylebone Rd, we ran asingle

a gorithm/data configuration test as only flow data was available whereas Russell Sg. had
both flow and occupancy. The results are given in table 5. We eval uated: whether to
incorporate the attributes of the sensor whose flow is being predicted (S); the time series
length (TS); the number of binsto use for quantisation (Bins); and, the k value for AURA
K-NN (k).

Table5. Tablelisting the MPE, MAPE and RM SE for various configurations of the AURA k-NN
with time series length 8 using the full week of query data. 15 indicates +15 minute ahead
prediction and 60 indicates + 1 hour ahead prediction. The highest prediction accuracy for each

column is shown in bold.

AURA k-NN Configuration | MPE MAPE RMSE
Name | S | TS|Bins|k |15 |60 [15 |60 |15 60
2-la |Y |6 |25 50]-10]-11[89|114| 1176 | 1444
2-1b | Y |10 |25 50]-12]-10|91|10.6| 1189 | 136.1
2-1c |Y |8 |11 50-12]-13]93|115|119.3| 143.6
2-21d |Y |8 |25 50]-11]-10[90|11.0|117.3| 139.3
2-le |Y |8 |49 50)-11]-10|9.0|11.0]| 118.1 | 139.9
2-1f N|8 |25 50 -13]-1.2|95|11.3| 1254 | 1448
2-1g |Y |8 |25 10 | -11|-0.6 8.7 | 10.0 | 115.9 | 131.7
221h |Y |8 |25 25]-11]-0.7]88]|10.3| 1151 | 1348

Again, thereis aclear difference between the best RM SE and worst RM SE for
both +15 minute and +1 hour prediction. The overall best performing configuration for
test 4 with respect to MPE, MAPE and RM SE was 2-1g which had some similar settings
to the best performing configuration (1-7) from test 2 (Russell Sg. data). However, there
are differencesin the settings and these demonstrate that both the agorithm and data must
be configured and evaluated against each data set if optimum performance is needed even
for relatively similar data.

The graphsin figure 8 show the prediction accuracy for configuration (2-1g) for
+15 minute prediction as a scatter plot and line graph and the graphsin figure 9 show the
prediction accuracy for +1 hour prediction for configuration (2-1g) as both a scatter plot
and aline graph. Thisillustrates where the prediction is accurate and whereit is

inaccurate across the time span of the test data.

19

Predicted vs Actual Flows Predicted Flow vs Actual Flow
1600 1800 -
1400 - 1600
1200 - 1400 1 |
H #1 i ;“1 \}\ "“ 1‘3 i :& | \"*‘» i 3
- i < + H f % b
e 1000 1200 1 | fﬁ‘ W R '{]% AL mﬁmw
2 800 3 1000 | | rl; 1 '%; ¥ 1
= K] | | |]
© 600 & 800 || (‘t EI t 7!
o 1
400 - 600 | | ! / ! ! ‘& ' i ,
¢ ! ’
200 400 +§ ‘*
200 _E} v Actual Flow
0 ' ' ' ' ! ' ! ' - Predicted Flow
0 200 400 600 800 1000 1200 1400 1600 0 .
Actual Flow Time (hours)

Figure 8. Scatter plot and line graph for the actua and predicted flow values for +15 minute
prediction (t+1) for AURA k-NN configuration 2-1g.

Predicted Flow vs Actual Flow Predicted Flow vs Actual Flow
1600 - 1800
1400 - 1600
1200 A 1400 1 , 4
2 J 1 i A .V
& 1000 | 1200 |] ;‘g'?_ M {1“ MW?‘}‘ %# ¥ !t?‘
& AR [YRS el R
£ 800+ 3 1000 1 | § { { i TR
2 ° p :
T 600 - T 800 |f | b1 | iy
&« 400 600 * J1 [: | 1] “ |
ST T A ¢
200 400 | b ¥
0 Actual Flow
' ' ' ' ' 200 ~ Predicted Flow
0 200 400 600 800 1000 1200 1400 1600 0
Actual Flow Time (hours)

Figure 9. Scatter plot and line graph for the actual and predicted flow values for +1 hour prediction
(t+4) for AURA k-NN configuration 2-1g.
From figures 8 and 9 and table 6, the AURA k-NN is again smoothing transient

spikes.
4.3.3 Test 5 — the best configuration for incident detection

We repeated test 4 using the data for only the day of the traffic incident (20/06/08) which
should be anomalous and thus more difficult to predict. The overall best performing
configuration for test 5 with respect to MAPE and RM SE was identical to the best
performing configuration for test 4. We call thistest 5 configuration 2-2g. As the result
replicated the result of test 4, the table of figures is omitted.

4.3.4 Test 6 — comparison to other algorithms

Test 6 compared AURA k-NN to the WEKA algorithms running identical data
configurations on data set 2. The test comprised two parts. In part 1, we used
configuration 2-1g from test 4 and the full week of test data. Part 2 used configuration 2-
2g from test 5 and just the incident test data. The results for part 1 are listed in table 6 and
for part 2 arelisted in table 7.

20

e Standard k-NN: k=10 and k=50 (to verify that k=10 outperforms as per the AURA
k-NN).

e MLP part 1 and part 2: learning rate = 0.4, decay = true, momentum = 0.3.

e SVM part 1: RBF Kernel, complexity = 150.0

e SVM part 2: RBF Kernel, complexity = 100.0.

Table 6. Table comparing the recall accuracy of the various predictors with time series length 8
and all sensors predicting a full week. The highest prediction accuracy for each row isin bold.
AURA K-NN_ 2-1gk-NN_10k-NN_50MLPI|SVM LMS

RMSE — 15 ming115.9 1156 [117.8 |114.6116.3123.6
RMSE — 60 ming131.7 132.7 [(139.6 [146.0155.6197.2

For part 1, the MLP had the lowest RM SE for +15 minute prediction followed by
the K-NN_10 and AURA k-NN. For +1 hour prediction, AURA k-NN was the most

accurate.

Table 7. Table comparing the recall accuracy of the various predictors with time series length 8

and al sensors predicting the day of incident only. The highest prediction accuracy for each row is

shown in bold.

AURA K-NN_2- 2gk-NN_10k-NN_50MLPI|SVM LMS
RMSE — 15 ming128.8 128.0 [137.8 [137.5142.4161.9
RMSE — 60 ming150.7 151.4 |157.6 [163.5182.8223.4

The standard k-NN performed best for part 2 for +15 minute prediction closely
followed by the AURA k-NN and vice versafor +1 hour with AURA k-NN slightly
outperforming.

For both evaluations, using k=10 outperformed using k=50 for the standard k-NN
supporting our results for the AURA k-NN.

4.35 Test 7 - AURA k-NN run time.

Our final test was an analysis of the run time of AURA k-NN. It isvital that the
underlying prediction algorithm is able to train and predict rapidly (between data
collections) for on-line applications. Our preceding eval uations have confirmed that both
the algorithm and the data must be configured. This configuration will need to be run
periodically to maintain an up-to-date system and must be fast.

We have previously demonstrated that AURA k-NN training from raw data was
up to four times faster than conventional k-NN [21]. Zhou et al. [38] determined that the
AURA Kk-NN trains up to 450 times faster than an MLP. Training timeis particularly
important as this forms the bulk of the overal run time. Here we evaluated whether we
can speed the AURA k-NN further by reading binary files from disk storage. The AURA

21

k-NN may read in the data as raw data and perform training of the CMM as per section 3.
Alternatively, the contents of the CMM may be written to disk once the CMM has been
trained and then read in from the saved file. We evaluated the timings for both
approaches.

Table 8. Table listing the timings (seconds) for training the respective data sets from raw data,
training the AURA k-NN from astored CMM file and running a single query

Historical data size (vectors) | Trainfromraw | Train from saved | Query
(seconds) (seconds) (seconds)
2,976 0.268 0.0020 0.0029
29,760 9.12 0.0169 0.0086
119,040 83.9 0.0662 0.0277
1,071,360 820.4 0.5914 0.2308

The software evaluated was a C++ prototype implementation that had not been
optimised at this stage. It ran on a Linux-based 3.4Ghz Intel Pentium IV machine with
2GB of RAM and 1IMB of cache. For this analysis, we used data set 2 training data
comprising 2,976 records and applied one query of TS=8, k=10 and Bins=25. We then
replicated the dataset ten times to give atraining set of 29,760 records, forty timesto
produce 119,040 records and 360 times to produce 1,071,360 records and recorded the
respective timings. The timings are averaged over five runs and are listed in table 8 and

shown in figure 10.

Time to Train from Binary File Time to Train from Raw Data

o

o
o
©
=]
=]

o
<3
=]

[

o
o

~
o
5}

o
IS

@
=}
s}

o
=}
s}

IS
=]
o

o
[N}

300
= 200
100
; ; . . ‘ | 0 . . ‘ ‘ . !
200000 400000 600000 800000 1000000 1200000 0 200000 400000 600000 800000 1000000 1200000

Records Records

Time (seconds)
3
w

Time (seconds)

o

o
o

Time for One Query

0.25

0.2 /

0.15

0.1

Time (seconds)

0.05

0 200000 400000 600000 800000 1000000 1200000

Records

Figure 10. Graphs showing the actua growth in training time and query time from 2,976 to
1,071,360 records

22

The run time growth for AURA k-NN training and querying was linear: O(n)
which agrees with our theoretical figure established in section 3. Reading the datain from
aCMM stored on disk can exploit the compact representation used for our CMM and is
amost 1400 times faster compared to training from raw datafor the large 1million+
records data set. We already knew that the AURA k-NN was up to four times faster than
standard k-NN but reading the CMM from disk can further speed the AURA k-NN
markedly.

Traffic data generally arrive at five minute intervals although they may arrive as
frequently as every 30 seconds. One year of five minute interval data comprises 105,120
records. Interpolating from the above results, this would take approximately 0.07 seconds
to read from the binary file and 0.04 seconds to query. Similarly, one year of 30 second
interval data comprises 1,051,200 records which would take approximately 0.65 seconds
to read from the binary file and 0.24 seconds to query. Thistiming analysis indicated that
the AURA k-NN would be fast enough for our on-line IDS processing one year of

historical data, typically producing resultsin less than one second.

5 Analyses

K-NN in general performs comparably with other modelling approaches here with respect
to prediction accuracy as shown in tables 3, 4, 6 and 7. The advantage of the AURA k-
NN liesin the speed and scalability of training and prediction.

For agorithm configuration, the AURA k-NN only needed to optimise the
number of bins and the k value for each data set but these do need to be configured
carefully and arange of values assessed. This agrees with both [19] and [20] where we
also found that there is no single best k value for predicting bus journey times[19] or a
single best number of bins for a broad range of time series data [20]. From the ten
data sets evaluated in [20] and the traffic data sets evaluated here, there is no obvious
correlation between the data characteristics and the best configuration neither is there
an obvious correlation between the data distribution and the best configuration.
Therefore, we aim to provide guidelines by recommending suitable ranges of values
for k and the number of bins. We have found that the best k can range from 10 to 50
here. K-NN is an instance-based learner relying on the nearest stored data points to
produce the prediction. The k value is affected by the density of the data and the data
coverage. The k value needs to be set to ensure that the majority of points from the k
best matches will predict the correct value. If the value istoo low then the prediction
isreliant on too few data points. If it istoo high then it may draw data points from

too large an area making prediction unreliable. The number of binsrangesfrom 11 to

23

49 here. If the number of binsis set too low then the AURA k-NN will fail to
separate the data and discrimination will be too low. Too many bins and the data
points become too sparse across multiple dimensions and fail to discriminate.

The CMM does not need to be retrained to optimise the k value as this just
requires the number of matches returned to be varied. However, it does need retraining to
optimise the number of bins. For data configuration: the sensors, the set of attributes from
each sensor and the time series length al need to be optimised. Again, the CMM does not
need retraining to vary the sensors or attributes. If all attributes that may be used are
trained into the CMM then only CMM rows that relate to sensors under investigation
need to be activated and all other rows may be ignored.

Using more spatially distributed sensors produced better prediction accuracy as
shown by table 2 where AURA k-NN with 6 sensors outperforms AURA k-NN with 4
sensors with respect to MAPE and RM SE. Including the additional sensor attribute,
occupancy, only improved the prediction accuracy marginally (see table 2) so additional
attributes have to be selected carefully. Kamarianakis and Prastacos [18] showed that
attributes and sensors need to be carefully considered and these results agree with their
findings. Varying the time series length requires the CMM to be retrained. It was possible
to pinpoint asingle idea time series length for both data sets here (TS=8) but we expect
that the length would need to be varied for different data sets.

Previous eval uation have shown that AURA k-NN trains from raw data up to 450
times faster than an MLP [38] and executes up to four times faster than standard k-NN
[21]. Here, we showed in table 8 that AURA k-NN executed even more rapidly by
reading trained CMMs stored on disk and then retrieving the k nearest neighbours.

An advantage of both standard and AURA k-NN over the model-based
approachesis that they can incorporate new datainto the k-NN framework simply and
quickly. New data may simply be added to the database for standard k-NN or added as
new columnsto the AURA CMM. A model-based approach would have to remodel the
new data which is a computationally intensive process. The AURA k-NN will need to be
tuned periodically to keep it up to date but evaluating multiple algorithm and data
configurations is computationally feasible. Conversely, the SYM and MLP require
Intensi ve optimisation across a number of parameters and we noticed that the RM SE for
both the SVYM and the MLP varied according to the parameters selected. This presents
computational processing issuesfor an on-line IDS using either an SVM or MLP asthe
data would need to be remodelled regularly as new data became available to prevent
model drift.

We noted in our four criteria that the prediction algorithm must be ableto

accommodate non-stationary data and, thus, short-term data fluctuations. Mulhern and

24

Caprara [39] suggested that multivariate k-NN can identify chaotic time series patterns
(such asthose found in traffic flows) that model-based approaches would miss. The
nonparametric regression technigque of k-NN which effectively mines the dataand
retrieves actual cases (loca search) is much better suited to such prediction tasks than
data modelling techniques such as MLP, SVM or LM S which produce general models
that tend towards the mean. Data such as traffic flows are susceptible to local, short-term
variations such as daily variations in demand, incidents or the weather. These short-term
variations must be identifiable by the technique to allow accurate prediction and a model
that tends towards the mean may well miss them. This hypothesis agrees with the findings
of [17, 39, 40] across various problem domains.

The AURA k-NN will generate a prediction using the average value of the k
neighbours. This averaging tended to smooth transient spikes and appeared to be
overestimating more frequently than underestimating for this data. However, the data sets
used in these evaluations were relatively small. We posit that alarger training set, such as
afull year of datawith 365 * 96 = 35,040 records (assuming no missing data), may lead

to more accurate predictions as more examples of each time series would be present.

6 Conclusion

The AURA k-NN was the overall best performing predictor of the methods evaluated on
the data setsin this paper in terms of both speed and accuracy. It performs comparably
with respect to prediction accuracy and is able to be implemented for rapid execution and
scalability of both training and retrieval of the k nearest neighbours. We envisage using
the AURA Kk-NN as a“train once use many” predictor, writing the CMM to disk for
safety, running repeated queries and reading the CMM from disk when necessary. New
data may be added to the CMM by adding additional columnsto the matrix. The rapid
execution allows the algorithm and data parameters to be tuned if necessary to prevent
drift.

All predictors evaluated here required both the data and a gorithm settings to be
configured. The fast execution time and minimal parameter set of the AURA k-NN
facilitates this combinatorial configuration process. The only algorithm parameter
required for standard k-NN is the k value. The AURA k-NN added one parameter to this:
the number of quantisation binsfor each attribute. It may be possible that heuristicsto
guide the parameter setting can be inferred through analysing a diverse range of data sets.

One disadvantage of k-NN isthat it isonly as good as the historical datain the
database. Some model based methods such as MLPs are able to generalise and effectively
plug gaps in the training data. If there is agap in the data space then there will be no

exemplars available to k-NN in thisregion so predictions will be produced from more

25

distant neighbours. Hence, it is vital, that the historical data base is sufficiently large with
sufficient coverage to optimise accuracy. Thisis particularly true for infrequent events
such as traffic incidents. A large database covering along time span will contain more
event data which will enable better instance-based prediction for a k-NN method.
However, if the data base is too large then computational time will be excessive for
standard k-NN. For this reason, we use the faster AURA k-NN to underpin the predictor
so much larger databases with better coverage may be processed.

We feel that the AURA k-NN prediction accuracy can be improved. We noted
from the M PE that the AURA k-NN tends to overestimate traffic flows. Hence, future
work will investigate increasing the prediction accuracy by incorporating: time-of-day
matching using time-of-day profiles; k-NN distance weighting; and, introducing error
feedback. As discussed above, using alarger database covering a longer time span may
also improve instance-based prediction. We will aso investigate using confidence
estimators where the prediction is accompanied by a confidence val ue based on the
distance of the matches from the query.

Ultimately, it is hoped that the predictor will be incorporated into an intelligent
decision support system for traffic monitoring and tested against real-world data from
London, Kent and Y ork in the UK. By producing predictions, the IDS will be able to
make recommendations proactively and anticipate traffic problems rather than
functioning reactively and being subject to time lags inherent in data collection. The
proposed method is generic and we hope to apply it to other domains that use spatially
distributed sensors where neighbourhoods of sensors exist and where temporal

characteristics are important.

Acknowledgments

The work reported in this paper forms part of the FREEFLOW project, which is supported by the
UK Engineering and Physical Sciences Research Council, the UK Department for Transport and
the UK Technology Strategy Board. The project consortium consists of partnersincluding
QinetiQ, Mindsheset, ACIS, Kizoom, Trakm8, City of Y ork Council, Kent County Council,

Transport for London, Imperia College London and University of Y ork.

References

[1] Gorry, G. and Scott-Morton, M. (1971). A framework for management information systems.
Sloan Management Rev., 13(1):55-70.

[2] Glover, P., Rooke, A. and Graham, A. (2008). Flow diagram. Thinking Highways, 3(3), pp.
20-23.

26

[3] Schelter, B., Winterhader, M. and Timmer, J. (2006). Handbook of time series anaysis: recent
theoretical developments and applications, Wiley-VCH, ISBN: 978-3-527-40623-4

[4] Ding, A., Zhao, X. and Jiao, L. (2002). Traffic Flow Time Series Prediction Based On
Statistics Learning Theory. In, Procs |EEE 5th International Conference on Intelligent
Transportation Systems, pp. 727-730.

[5] Vapnik, V. (1995). The nature of statistical learning theory. New Y ork: Springer-Verlag,
ISBN: 0387987800.

[6] Box, G. and Jenkins, G. (1976). Time Series Analysis: Forecasting and Control. Holden-Day,
San Francisco.

[7] Hamed, M. and Al-Masaeid, H. (1995). Short-term prediction of traffic volumein urban
arterias. J. of Transp. Eng. (ASCE) 121(3): 249-254.

[8] Williams, B., Durvasula, P. and Brown, D. (1998). Urban freeway traffic flow prediction:
Application of seasona autoregressive integrated moving average and exponential smoothing
models. Transp. Res. Record: J. of the Transp. Res. Board, 1644: 132-141.

[9] Ghosh, B., Basu, B. and O'Mahony, M. (2007). Bayesian time-series model for short-term
traffic flow forecasting. Journal of Transp. Eng. (ASCE) 133(3): 180-189.

[10] Amin, S., Rodin, E., Liu, A-P. and Rink, K. (1998). Traffic Prediction and Management via
RBF Neural Nets and Semantic Control. J. of Computer-Aided Civ. and Infrastruct. Eng., 13: 315-
327.

[11] Vlahogianni, E., Karlaftis, M. and Golias, J. (2005). Optimized and meta-optimized neural
networks for short-term traffic flow prediction: A genetic approach. Transp. Res. Part C: Emerging
Technologies, 13(3): 211-234.

[12] Abdulhai, B., Porwal, H. and Recker, W. (2002). Short-Term Traffic Flow Prediction Using
Neuro-Genetic Algorithms. J. of Intell. Transp. Sys.: Technology, Planning, and Operations, 7(1):
3-41: Taylor & Francis.

[13] Martinetz, T., Berkovich, S. and Schulten, K. (1993). Neural-gas network for vector
guantization and its application to time-series prediction. IEEE-Trans. on Neural Netw., 4(4): 558-
569.

[14] Zhang C., Sun' S. and Yu, G. (2004). Short-Term Traffic Flow Forecasting Using Expanded
Bayesian Network for Incomplete Data. In, Procs International Symposium on Neural Networks,
Dalian, China. Lecture Notes in Computer Science, (LNCS 3174), Springer-Verlag.

[15] Kindzerske M. and Ni, D. (2007). A Composite Nearest Neighbor Nonparametric Regression
to Improve Traffic Prediction. Transp. Res. Record: J. of the Transp. Res. Board, 1993: 30-35.
[16] Yakowitz, S. (1987). Nearest-Neighbour Methods for Time Series Analysis. J. of Time Series
Anal., 8(2): 235-247.

[17] Krishnan, R. and Polak, J. (2008). Short-term travel time prediction: An overview of methods
and recurring themes. Procs Transportation Planning and Implementation Methodol ogies for
Developing Countries Conference (TPMDC 2008), Mumbai, India, December 3-6, 2008. CD-
ROM

27

[18] Kamarianakis, Y. and Prastacos, P. (2003). Forecasting traffic flow conditionsin an urban
network: Comparison of multivariate and univariate approaches. Transp. Res. Record: J. of the
Transp. Res. Board, 1857: 74-84.

[19] Hodge, V., Jackson, T. and Austin, J. (2012).A Binary Neural Network Framework for
Attribute Selection and Prediction. In, Procs 4th International Conference on Neural Computation
Theory and Applications (NCTA 2012), pp. 510-515, Barcelona, Spain: SciTePress

[20] Hodge, V. and Austin, J. (2012). Discretisation of Datain aBinary Neural k-Nearest
Neighbour Algorithm. Tech Report Y CS-2012-473, Department of Computer Science, University
of York, UK

[21] Hodge, V. and Austin, J. (2005). A Binary Neural k-Nearest Neighbour Technique. Knowl.
and Inf. Sys., 8(3): 276-292, Springer-Verlag London Ltd.

[22] Austin, J., Kennedy, J. and Lees, K. (1998). The Advanced Uncertain Reasoning
Architecture, AURA. In, RAM-based Neural Networks, Ser. Progressin Neural Processing. World
Scientific Publishing, 9: 43-50.

[23] Hodge, V., Krishnan, R., Austin, J. and Polak, J. (2010). A computationally efficient method
for online identification of traffic incidents and network equipment failures. Presented at, 3
Transport Science and Technology Congress: TRANSTEC 2010, New Delhi, April 4-7, 2010.
[24] Krishnan, R., Hodge, V., Austin, J. and Polak, J. (2010a) A Computationally Efficient
Method for Online Identification of Traffic Control Intervention Measures. 42™ Annual UTSG
Conference, Centre for Sustainable Transport, University of Plymouth, UK: January 5-7, 2010
[25] Krishnan, R., Hodge, V., Austin, J., Polak, J. and Lee, T-C. (2010b). On Identifying Spatial
Traffic Patterns using Advanced Pattern Matching Techniques. In, Transportation Research Board
(TRB) 89th Annual Meeting, Washington, D.C., January 10-14, 2010. (DVD-ROM: 2010 TRB
89th Annua Meeting: Compendium of Papers)

[26] Hebb, D. (1949). The organization of behavior: a neuropsychological theory, Wiley, New

Y ork.

[27] Hodge, V. and Austin, J. (2001). An evaluation of standard retrieval algorithms and a binary
neural approach. Neural Netw., 14(3): 287-303

[28] Bentz, H., Hagstroem, M. and Palm, G. (1989). Information storage and effective data
retrieval in sparse matrices. Neural Netw., 2(4): 289-293.

[29] Austin, J. (1995). Distributed associative memories for high speed symbolic reasoning.
In, R. Sunand F. Alexandre, (eds), IJCAI '95 Working Notes of Workshop on Connectionist-
Symbolic Integration: From Unified to Hybrid Approaches, pp. 87-93, Montreal, Quebec.
[30] Weeks, M., Hodge, V., OKeefe, S., Austin, J. & Lees, K. (2003). Improved AURA k-Nearest
Neighbour Approach. In, Procs IWANN-2003, International Work-conference on Artificial and
Natural Neural Networks, Mahon, Spain. June 3-6, 2003. Lecture Notesin Computer Science
(LNCS) 2687, Springer Verlag, Berlin.

[31] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten |. (2009). The
WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newd etter, 11(1): 10-18.
[32] Witten, I. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

28

[33] Cover T. and Hart P. (1967). Nearest neighbor pattern classification. IEEE Trans on
Information Theory, 13(1): 21-27.

[34] Rumelhart, D., Hinton, G. and Williams, R. (1988). Learning representations by back-
propagating errors (pp. 696-699). MIT Press, Cambridge, MA, USA.

[35] Platt, J. (1998). Fast Training of Support Vector Machines using Sequential Minimal
Optimization. In, B. Schoelkopf, C. Burges and A. Smola, (eds), Advancesin Kernel Methods -
Support Vector Learning. MIT Press, Cambridge, MA, USA, 185-208.

[36] Labeeuw, W., Driessens, K., Weyns, D., Holvoet, T. and Deconinck, G. (2009). Prediction of
Congested Traffic on the Critical Density Point Using Machine Learning and Decentralised
Collaborating Cameras. In, New Trendsin Artificial Intelligence, 14th Portuguese Conference on
Artificia Intelligence, EPIA 2009, Aveiro, Portugal, pp. 15-26.

[37] Krishnan, R., (2008). Travel time estimation and forecasting on urban roads, PhD thesis,
Centre for Transport Studies, Imperial College London.

[38] Zhou, P., Austin, J. and Kennedy, J. (1999). High Performance k-NN Classifier Using a
Binary Correlation Matrix Memory. In, Procs Advances in Neural Information Processing Systems
Vol. I, David A. Cohn (Ed.). MIT Press, Cambridge, MA, USA, 713-719.

[39] Mulhern, F. and Caprara, R. (1994). A Nearest Neighbor Model for Forecasting Market
Response. Int. J. of Forecast., 10(2): 191-207, ISSN 0169-2070.

[40] Oswald, R., Scherer, W. and Smith, B. (2001). Traffic Flow Forecasting Using Approximate
Nearest Neighbour Nonparametric Regression. Research Report No. UVACTS-15-13-7. Centre

for Transportation Studies, University of Virginia

29

Appendix

WEKA MLP configuration.

Settings in italic were changed from the WEKA defaults but not changed between runs and
settingsin bold/italic were varied for each run to tune the MLP.

gui false

autoBuild true

debug false

decay true

hiddenLayers t (number of hidden layers = numAttribs + numClasses)
learningRate 0.4

momentum 0.3

nominal ToBinaryFilter true

normalizeAttributes true

normalizeNumericClass true

reset true
seed 0
trainingTime 500
validationSetSize 30
validationThreshold 20

WEKA SVM configuration.

Settings in italic were changed from the WEKA defaults but not changed between runs and
settingsin bold/italic were varied for each run to tune the SVM.

complexity 50.0

debug false

fileType Normalize training data

kernel RBFKernel -C 250007 -G 0.01

regOptimizer RegSMOImproved -L 0.0010 -W 1 -P 1.0E-12 -T 0.0010 -V

30

