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Abstract 

 

This paper is concerned with signal plan selection. The paper outlines a system designed to 

assist the timely selection of sound congestion-reducing signal control plans; utilising on-line 

pattern matching. In this system, historical traffic flow data is continually searched, seeking 

traffic flow patterns similar to today’s. If, in one of these previous similar situations, (a) the 

signal plan utilised was different to that being utilised today and (b) it appears that the 

performance achieved was better than the performance likely to be achieved today, then the 

system recommends an appropriate signal plan switch. The heart of the system is “similarity”. 

Two time series of traffic flows (arising from two different days) are said to be “similar” if the 

distance between them is small; similarity thus depends on the metric or distance between the 

two time series. In this paper a simple example is given which suggests that utilising the 

standard Euclidean distance between the two sequences comprising cumulatives of traffic flow 

may be better than utilising the standard Euclidean distance between the two sequences of 

original traffic flow data. The paper also gives measured on-street public transport benefits 

which have arisen from using a simple rule-based (responsive) signal plan selection system, 

compared with a time-tabled, or fixed-time, signal plan selection system.   
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1. Introduction  

Travel is fundamental for the social, economic and cultural development of modern society; as 

an increasing population seeks ever-increasing mobility. This results in increasing congestion, 

especially in cities. How to address growing congestion in cities world-wide has been 

recognised as one of the major challenges in the 21
st
 century, especially as currently more than 

50% of the world’s population now live in cities.   

 

One of the tools that may be utilised to reduce congestion is the traffic control system. This 

paper considers pattern matching as part of an intelligent decision support (IDS) system aimed 

at helping to recall traffic signal control plans which worked well in the past (so that these 

successful plans may be re-utilised). The paper supposes that a list of signal control plans is 

already given and does not consider the generation or design of new signal plans.  

1.1. Pattern-matching-based signal control plan selection 
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Given a list of signal control plans, the aim of a pattern-matching-based signal-plan selection 

system is (1) to recognise (quickly) those situations occurring today which have arisen 

(approximately) in the past, (2) to recall the specific signal plans which worked well in the 

past (if any), and (3) of those signal plans recalled, to recommend the most relevant plan 

change for implementation now. The central assumption is that  

what happens next is (likely to be) what happened before. 

  

The pattern-matching signal control system proposed here was designed in conjunction with 

the City of York. The stated aim of the City was to reduce Park and Ride journey times 

without significantly damaging car travel times; the policy tool agreed was to switch signal 

timing plans suitably. [The list of signal timing plans was here regarded as fixed; although 

some very limited signal timing plan “design” was undertaken.]  

1.2 A very short technical context  

 

Ritchie (1990) and Zhang and Ritchie (1994) design an integrated set of expert systems to 

process real-time data where learning possibilities are envisaged. Hernandez et al. (1999) 

introduced the TRYS system for building intelligent traffic management systems. Results of 

applying ramp metering strategies have been obtained by Haj-Salem and Papageorgeiou 

(1995). A recent review of current techniques for utilising ITS in traffic management is 

provided by Papageorgiou et al (2007).  

 

Broadly speaking, the work in this area addresses one or more of the following three 

questions.  

Question 1 (concerning signal plan selection): for a given scenario, now, how should a signal 

plan be selected (from a given list or library of signal plans)?  

Question 2 (concerning signal plan design): for a given scenario, how should new signal 

timing plans be designed for that scenario?  

Question 3 (concerning adaptive or responsive control): how should signals adapt or respond 

(automatically) to traffic flows as these change? 

The above questions are relevant over different time-scales: signal plan selection and 

responsive control should both ideally operate very quickly, while signal plan design must 

necessarily be much more laborious and hence slow.   

 

It is natural to utilise pattern matching as an element in seeking to address question 1; and 

pattern matching may also have relevance to question 2. Felici et al (2006) seek to address 

both questions 1 and 2. Wiering et al (2004) outline a method of using pattern matching to 

help find good signal timings. Weijermars (2007) and Thomas et al (2008) present 

compendious and interesting analyses of traffic flow variations; various possible applications 

(including pattern matching applications) are mentioned but not discussed in any detail. They 

identify (a) seasonal variations with time scales of a week or more, (b) periodic variations at 

time scales of about 30 minutes and (c) noise. This paper is concerned mainly with question 1, 

concerning signal plan selection using pattern matching; but the paper also gives a brief 

description of a simple rule-based signal plan selection system together with on-street results 

of applying it. The paper makes a few comments on signal plan design and also outlines some 

technical data matters concerning the City of York. 

 

There is a vast literature on question 3 concerning responsive signal control. The most well-

known responsive rule for adjusting signal timings is the equisaturation rule devised by 

Webster (1958). Such rules, together with many others, are now utilised in the majority of 
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responsive signal control systems operating in the world today; aiming to approximately 

optimise signal timings by utilising (reasonably quick) responses to traffic flow changes.  

 

1.2.1 Technical data management and the traffic flow data utilised 

 

The City of York has an Urban Traffic Management and Control (or UTMC) system; this is 

designed to have published interfaces so as to aid the utilisation of all information flowing 

through the system. Every 5 minutes the UTMC system in York publishes the number of 

vehicles which have crossed each detector in the previous 5 minutes; the pattern-matching 

system was designed to utilise this “5-minute” traffic flow data.  

  

1.2.2 Signal plan selection using pattern matching   

 

Hauser, Scherer and Smith (2000) consider the opportunities for data mining to help design 

switching points in timetabled traffic control systems (the separate traffic control plans are 

given and fixed-time). Hegyi et al (2001) suggest using fuzzy logic based traffic control to 

manage non-recurrent congestion. De Schutter et al. (2003) extend this, combining case-based 

reasoning and fuzzy logic to develop a multi-agent evaluation system that can be used by 

traffic operators to analyse the expected performance of several potential (given) 

interventions. Zografos et al. (2002) developed an intelligent decision support system to 

reduce incident duration by integrating mathematical models, rules and algorithms with 

display technologies, allowing faster more accurate interventions. Almejalli et al. (2007) 

combine fuzzy logic, a neural network and a genetic algorithm to assist network operators by 

estimating the likely effectiveness of (given) interventions. Chen et. al. (2006) outline the 

design of a large-scale decision support system for Beijing. 

  

1.2.3 Signal plan design   

 

Kotsialos et al (2002) utilise non-linear optimal control theory to design motorway control 

systems; Hegyi (2004) outlines how model predictive control may be used to put together a 

coherent package of traffic control measures; van den Berg et al (2008a, b, 2009) and Shu Lin 

et al (2010) outline methods for designing interventions using mixed integer linear 

programming, within a model predictive control framework. (Thus far their main emphasis has 

not been on traffic signal control itself; however there are implications in their work for the 

design of traffic signal control plans.) Dealing specifically with traffic signal control in 

networks, Angulo et al (2011) suggest ways of optimising (and implementing) signal control 

plans using soft computing techniques and Smith (2009, 2010) and Smith and Mounce (2011) 

suggest a new way of designing fixed time signal plans suitable for different scenarios, using 

models. Smith (2006) applies bilevel optimisation to this problem; it would be interesting to 

compare this to approaches based on model predictive control.  

 

1.3 Signal plan selection using rules: a real-life result  

 

Reasonably simple rule-based signal plan selection methods avoid most of the operational 

delays which arise with a fully-fledged pattern-matching signal-plan change method; and even 

simple rules may yield significant benefits, as is suggested by the results shown here.  
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On the Hull Road in York general traffic is gated every day at one traffic signal by 

implementing a small green-time upstream of a bottleneck, moving a queue of general traffic 

heading for the City upstream to where the queue may be passed by buses.    

 

The system currently utilised to select the gating plan is a simple time-table plan: 

 implement gating between 07:45 and 09:15. 

In our demonstration this was changed to the following very simple rule-based signal plan 

selection system: 

when the flow past a specified detector exceeds 68 vehicles in three consecutive 5-minute 

intervals then activate gating; and 

when the flow past a specified detector is less than 68 vehicles in three consecutive 5-minute 

intervals then de-activate gating. 

This responsive rule, and the gating strategy itself, were arrived at by model-based 

optimisation and some trial and error data modelling; this modelling tested seven different 

alternative plan selection rules off-line using flow data from the road network. (See Hodge et 

al (2010) for details.) The results obtained are shown in table 1. 

  

 Average bus journey time Standard deviation of bus journey time 

Timetabled gating 180 seconds 91 seconds 

Responsive gating 159 seconds 65 seconds 

Table 1: On –street results for a.m. bus journey times with timetabled gating and rule-based,  

responsive, gating. Under the timetabled plan selection regime there were 508 journeys and 

under the rule-based responsive plan selection regime there were 61. 

These results suggest that, compared to time-tabled signal plan selection, a simple responsive 

rule-based plan selection is likely to reduce the mean morning bus journey time; and is also 

likely to reduce the spread of morning bus journey times, improving bus journey time 

reliability.   

 

2 A pattern matching system for signal plan selection 
 

The plan selection system described here requires flows and signal plans to be stored so as to 

allow quick recall. An evaluation or performance index must also be calculated and stored. 

Pattern matching may then be used to determine a few of the most relevant or close matches 

(to today) from the past. The plan switch recommended then depends on (1) the distances to 

the matches selected (a small distance means that this past day was very similar and so 

relevant to today) and (2) the performance indices (PIs) of the corresponding (flow pattern, 

signal plan) pair.  

 

2.1. Examples of performance indices. 

 

There are very many possible performance indices or PIs. The ones we agreed with the City of 

York Council, and which led to the results in section 1.3 above, were:  

 average public transport journey time along the Hull Road and 

 standard deviation of the public transport journey time along the Hull Road.   

Another example of a PI is: 

 average journey time for cars. 

Clearly, there are interactions between the PIs chosen, the interests of the local authority and 

the data gathering facilities available. The City of York has a great interest in improving and 
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monitoring bus performance so as to encourage car travellers to park their cars on the outskirts 

of York and use Park and Ride buses to reach the historic City.   

 

2.2. Suggested technique for signal plan selection. 

 

The aim is to recover those flow patterns which have the best (smallest) PIs on the days most 

similar to today. So suppose that we have found, in the historical record, the k flow patterns  

 flow pattern 1, flow pattern 2, flow pattern 3,  . . . , flow pattern k  
which are closest to today’s flow pattern so far; that is to flow pattern 0. Suppose that we also 

have recovered the corresponding signal plans utilised; let signal plan n be the plan utilised 

with flow pattern n. Suppose also given the corresponding performance indices or PIs; with 

PI(n) being the PI associated with the (flow pattern n, signal plan n) pair. For 1 ≤  n ≤ k, let  

 R(n) =  [PI(0) – PI(n)] 

be the estimated reduction R(n) in the PI which would arise if plan 0 was switched to plan n 

and 

 Q(n) = R(n)/dist[flow pattern n, flow pattern 0]. 

It would then be reasonable to continually suggest for implementation plan n* where n* 

maximises Q(n) (for 1 ≤ n ≤ k), provided Q(n*) exceeds an agreed positive threshold th. (It 

would not be good to change plans for diminutive estimated rewards.) R stands for 

“reduction” and Q stands for quotient or ratio and estimates the reward / risk ratio, assuming 

that reward is proportional to the predicted decrease in the PI and risk is proportional to 

dist[flow pattern n, flow pattern 0]. 

 

Figure 3 in appendix 1 is designed to be a user-friendly representation of this process; so as to 

aid the decision-maker. In figure 3 the estimated reductions in the PI are shown on the vertical 

axis and the distance of the historical cases to today’s flow pattern are shown on the horizontal 

axis. To change to the plan on day m one would wish to see R(n) large (predicting a large 

benefiot from the switch) and a small dist[flow pattern n, flow pattern 0] (giving confidence); 

or a large Q(n). 

 

The Intelligent Decision Support system would then continually send simple messages to 

transport operators always recommending plan n* where 

 Q(n*) ≥ Q(n) if 1 ≤ n ≤ k; and also Q(n*) ≥ th > 0.     (1)  

Plan n* could be automatically implemented if the system had generated sufficient trust and 

facilities are available. To build confidence the initial threshold th might be large, to be 

reduced over time. There are natural generalisations: it would perhaps be natural to let F be 

any convex increasing positive function and to put:  

        QF(n) =  F{[PI(0) – PI(n)]}/dist[(flow pattern n, flow pattern 0)]. 

The continual recommendations would then still be determined by (1) but with QF instead of 

Q. A steep F will recommend few plan changes and if F is the identity then QF(n) = Q(n) and 

we have the previous scheme.  

 

To do the selection in a short period of time it is important to be able to search very large 

databases very quickly.   

 

2.3 Fast large k-NN searches 

 

Standard k-NN pattern matching is known to be a robust and flexible method that allows the 

pattern matcher to be updated continuously. However one drawback is the speed of the 

standard method, which typically becomes slow for large problems.  
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An efficient version of k-NN, based on the Advanced Uncertain Reasoning Architecture 

(AURA) (Austin et al., 1998; Hodge and Austin, 2005), may be used to overcome this 

problem. AURA is a library of methods and applications built on binary neural networks and 

designed for high speed search and match operations in large data sets; AURA is thus fast, 

scalable and compact. Data may include (1) flow and occupancy data from a number of loop 

detectors at signals and elsewhere, (2) travel time data from a number of bus stops or buses, 

and (3) other data such as travel times estimated from GPS data. 

 

For each 5-minute period, on each day, the above data may be concatenated into a single 

current “5-minute attribute value vector” and then matched against past “5-minute attribute 

value vectors”.  

 

Derived data, such as the flow/occupancy ratio (see Han et al., (2009)), may also be utilised. 

Further, it is also natural to utilise road works data, special events data, and weather data. The 

purpose of using this additional data is to add precision to the matching of past traffic patterns 

to today’s patterns. For example it would be natural on a Race Day at York to look only at 

previous Race Days when seeking matching traffic patterns from past. Finally it would also be 

natural to use data derived from running offline models. 

2.2 Flows or cumulative flows?  

Pattern matching in this context requires the dis-similarity or distance between two time series. 

The Euclidean distance between two such time series  

 u = {u1, u2, u3, ... un} and v = {v1, v2, v3, ... vn}  

(each representing flows in each 5-minute time period stretching between times t1 and tn+1) is  

 d(u, v) = [(u1- v1)
2
 + (u2- v2)

2
 + (u3- v3)

2
 + . . . + (un- vn)

2
]

1/2
.    (2)

 

When the time series u and v above are time series of flows, with co-ordinates representing the 

flows in each 5-minute time period stretching between times t1 and tn+1, there is always the 

alternative of using use cumulative flows instead. To do this, we first calculate the 

corresponding time series of cumulative flow values  

 U = { U1, U2, U3,  . . . Un} and V =  { V1, V2, V3, . . .  Vn} 

by putting U1 = u1, U2 = u1+ u2, U3 = u1+ u2+ u3, etc. And only then use Euclidean distance.  
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Figure 1. Time series, u, v and w and the corresponding cumulative flow series, U, V and W. 

Consider the following three time series comprising 10 consecutive 5-minute flow values: 

Time series 1: u = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), so that U = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). 

Time series 2: v = (0, 2, 0, 2, 0, 2, 0, 2, 0, 2), so that V = (0, 2, 2, 4, 4, 6, 6, 8, 8, 10). 

Time series 3: w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), so that W = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0).   

 

All six time series are shown in figure 2; u, v, w are the given time series of flows and U, V, W 

are the corresponding cumulatives. Using the Euclidean distance formula directly,  

 d(u,v)   =  n
½
 = d(u,w).  

On the other hand, using the Euclidean distance on the sequences of cumulative flows: 

 d(U,V) = [½n]
½
 and  

 d(U,W) =  [n(n + 1)(2n + 1)/6]
½ 

= 
 
[(n + 1)(2n + 1)/3]

½
 [½n]

½
.  

So that, as n = 10,  

d(U,W)= [(n + 1)(2n + 1)/3]
½
d(U,V) = [11.21/3]

1/2
d(U, V) = [77]

1/2
d(U, V) > 8 d(U, V). 

Thus, for n = 10 and for these three time series u, v, and w, the Euclidean distance function 

indicates that v and w are equidistant from u. In contrast, Euclidean distance indicates that W is 

more than eight times as far away from U as V is. It is then natural to ask: which time series is 

more significant or “better” for matching in this traffic flow context? Plainly nearest 

neighbours may well vary according to the way the Euclidean metric is utilised.  

 

The original time series of 5-minute flows may be expected to give more information more 

quickly when there is a sudden change caused by a sudden serious accident; on the other hand 

it may exaggerate traffic impacts when (for example) everything is 5 minutes late. Cumulative 

flows may be better at detecting such a 5-minute shift and also may be better at diagnosing 

rather more long running and subtle changes brought about on a single day by a “minor” 

blockage leading rather gradually to problems, re-routeing caused by a rather distant accident 

or minor breakdowns in signal operation. Cumulative flows must also be better at detecting 

more long term systematic changes such as an increase in the flow of tourists or the number of 
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school runs at certain times of year. It may be that, for a given input sequence u of five-minute 

flows, the “state” of the link flow at a particular time might, for most purposes, be better 

measured by the corresponding cumulative flow sequence U.  

 

These considerations give rise to other possible metrics, bearing in mind that 5-minute flows 

from a long time past will be irrelevant. (Figure 1 just looks at 10 values; 50 minutes’ worth of 

5-minute periods.) So consider sequences of cumulatives over windows of various not-too-

long lengths t (where t is a multiple of l) ending at the current time t0 (also a multiple of l). To 

make this precise we choose a not too large number T (T = 10 in the above illustration) and 

agree that: 

 0t  now, e.g. 4pm on Thursday 1
st
 October 2011 (t0 is a multiple of l) 

 l  duration of the time period of the data aggregation, e.g. 5 minutes in UTMC, 

 T  duration of the moving time series window stretching backwards from 0t  to t0 – T 

  (all cumulatives utilised lie within this window and T is a multiple of l),  

 )(ufx
flow past location x  during time period u  stretching from u to (u + l) (where 

  u is a multiple of l), and 

 )(0 tF
t
x , the cumulative flow in the period [t0 – t, t0] is given by:  

  




}),...,(,{ 000

0 )()(

ltlttttu

x
t
x duuftF   

  for the values of t = l, 2l, 3l, . . . , T. (each t here is a multiple of l.)  

)(0 tF
t
x is the total or cumulative flow past location x  between time tt 0 and time 

0t . We then 

consider the following sequence of cumulatives over the whole window of duration T: 

  )(0 lF
t
x , )2(0 lF

t
x , )3(0 lF

t
x , . . . , )(0 TF

t
x .  

Figure 2 illustrates cumulative flows on the moving time series window; clearly T needs to be 

carefully calibrated in order to capture the correct time scale for detecting significant events. It 

would be natural to have copies of this system with different values of T to capture differing 

time-scales of different traffic phenomena.  (T = l yields the original distance function (2).)  

 
Let X  denote the set of locations x at which detectors are located and let Xx

t

x

t
FF  )( 00  

denote the vector of cumulative flow functions looking backwards from time t0. Then define 

the distance between cumulative vector flow profiles 0tF and 1tF as follows:  

time 

cu
m

u
la

ti
v
e 

fl
o
w

 

Figure 2. The moving time series window for flow at location x  

0tTt 0 tt 0

time series window 

)(0 tF
t

x
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





x

Tt

lt

t

x

t

x

tt
tFtFFFd

2

)()(),( 1010     (2) 

where t0 and t1 belong to different days and the time summation (over t) in (2) increments in 

units of l . A natural “exponential decay” version of (2) would be:  






 

x

t

lt

t
x

t
x

kttt
tFtFeFFd

2

)()(),( 1010       

where k > 0. This distance would be very quick indeed to calculate as previous values may be 

utilised in a simple updating formula, and it may prove to be accurate enough.  

3. Conclusion  

A pattern matching system has been outlined; this has been designed to help the intelligent 

selection of signal timing plans, with particular application in the City of York (or any other 

City with a UTMC system). The system utilizes the distance between two time series of traffic 

flows; and two ways of defining this distance have been given. (One is the standard Euclidean 

distance between the two sequences of raw 5-minute data and the other is the standard 

Euclidean distance between the two corresponding sequences of cumulatives). A simple 

example has been given which demonstrates that the distance which utilizes cumulatives may 

be the better of the two. Ways of using the pattern-matching results are outlined and a possible 

user-friendly presentation of these results is given in the appendix; see figure 3. On–street 

results from a real life test of a rule-based signal plan switching system have also been 

presented.  
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APPENDIX. An intuitive way of representing candidate signal plan changes. 

 

A way of representing the pattern matching results in a compact intuitive way is shown in 

figure 3. Five historical (flow pattern, estimated PI reduction) pairs are represented by white 

triangles. These are continually plotted (each 5 minutes say) and move against the background 

of a fixed cone of acceptable improvement with vertex at the current (flow pattern, 0) pair (the 

black triangle). The y-coordinate of triangle 4, for example, gives the estimated reduction in 

the PI which would arise if the current plan was changed to that utilized when flow pattern 4 

occurred in the past. 

The cone of acceptable improvement displays a trade-off between choosing a close match to 

the flow today so far (giving confidence, like flow 1 or 2 here which are very like today) and 

choosing a plan which gave a small PI in the past, and hence yields a large estimated reduction 

in the PI (like the plans associated with flow pattern 4 or 5). The plan associated with flow 

pattern 4 looks the best bet here. If the plan corresponding to flow pattern 4 is the same as the 

plan corresponding to flow pattern 5 then this diagram would strongly support that plan. Such 

perceptions are assisted by the picture shown here in figure 3. Arrows might be added to 

indicate the likely direction of movement of each triangle; extrapolated from past results. 
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Figure 3. Five historical (flow, performance reduction) pairs where the flow pattern is close to 

today’s flow pattern. The cone of acceptable improvement contains pairs with associated 

reasonable signal plans; here only (flow, performance reduction)4 and (flow, performance 

reduction)5 have reasonable associated signal control plans.  
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