
Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

HADOOP NEURAL NETWORK FOR PARALLEL AND

DISTRIBUTED FEATURE SELECTION

Victoria J. Hodge, Simon O’Keefe & Jim Austin

Advanced Computer Architecture Group,

Department of Computer Science,

University of York, York, YO10 5GH, UK.

{victoria.hodge, simon.okeefe, jim.austin}@york.ac.uk

Corresponding Author:

Dr Victoria J. Hodge.

Dept of Computer Science,

University of York,

Deramore Lane,

York, UK

YO10 5GH
Email: Victoria.hodge@york.ac.uk

Phone: +44 (0)1904 325637

Fax: +44 (0)1904 325599

Abstract

In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and

distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural

network which is highly amenable to parallel and distributed processing and fits with the Hadoop

paradigm. There are many feature selectors described in the literature which all have various strengths

and weaknesses. We present the implementation details of five feature selection algorithms constructed

using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and

distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be

processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel)

allowing multiple feature selectors to be compared. We identify commonalities among the five features

selectors. All can be processed in the framework using a single representation and the overall processing

can also be greatly reduced by only processing the common aspects of the feature selectors once and

propagating these aspects across all five feature selectors as necessary. This allows the best feature

selector and the actual features to select to be identified for large and high dimensional data sets through

exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in

Hadoop.

Keywords
Hadoop; MapReduce; Distributed; Parallel; Feature Selection; Binary Neural Network

1 Introduction

The meaning of “big” with respect to data is specific to each application domain and dependent on the

computational resources available. Here we define “Big Data” as large, dynamic collections of data that

cannot be processed using traditional techniques, a definition adapted from (Zikopoulos & Eaton, 2011;

Franks, 2012). Today, data is generated continually by an increasing range of processes and in ever

increasing quantities driven by Big Data mechanisms such as cloud computing and on-line services.

Business and scientific data from many fields, such as finance, astronomy, bioinformatics and physics,

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

are often measured in terabytes (10
12

 bytes). Big Data is characterised by its complexity, variety, speed

of processing and volume (Laney, 2001). It is increasingly clear that exploiting the power of these data

is essential for information mining. These data often contain too much noise (Liu, Motada, Setiono &

Zhao, 2010) for accurate classification (Dash & Liu, 1997; Han & Kamber, 2006), prediction (Dash &

Liu, 1997; Guyon & Elisseeff, 2003) or outlier detection (Hodge, 2011). Thus, only some of the features

(dimensions) are related to the target concept (classification label or predicted value). Also, if there are

too many data features then the data points become sparse. If data is too sparse then distance measures

such as the popular Euclidean distance and the concept of nearest neighbours become less applicable

(Ertöz, Steinbach & Kumar, 2003). Many machine learning algorithms are adversely affected by this

noise and these superfluous features in terms of both their accuracy and their ability to generalize.

Consequently, the data must be pre-processed by the classification or prediction algorithm itself or by a

separate feature selection algorithm to prune these superfluous features (Kohavi & John, 1997; Witten &

Frank, 2000).

The benefits of feature selection include: reducing the data size when superfluous features are discarded,

improving the classification/prediction accuracy of the underlying algorithm where the algorithm is

adversely affected by noise, producing a more compact and easily understood data representation and

reducing the execution time of the underlying algorithm due to the smaller data size. Reducing the

execution time is extremely important for Big Data, which has a high computational resource demand

on memory and CPU time.

In this paper, we focus on feature selection in vast data sets for parallel and distributed classification

systems. We aim to remove noise and reduce redundancy to improve classification accuracy. There is a

wide variety of techniques proposed in the machine learning literature for feature selection including

Correlation-based Feature Selection (Hall, 1998), Principal Component Analysis (PCA) (Jolliffe, 2002),

Information Gain (Quinlan, 1986), Gain Ratio (Quinlan, 1992), Mutual Information Selection

(Wettscherek, 1994), Chi-square Selection (Liu & Setiono, 1995), Probabilistic Las Vegas Selection

(Liu & Setiono, 1996) and Support Vector Machine Feature Elimination (Guyon, Weston, Barnhill &

Vapnik, 2002). Feature selectors produce feature scores. Some feature selectors also select the best set of

features to use while others just rank the features with the scores. For these feature rankers, the best set

of features must then be chosen by the user, for example, using greedy search (Witten & Frank, 2000).

It is often not clear to the user which feature selector to use for their data and application. In their

analysis of feature selection, Guyon and Elisseeff (2003) recommend evaluating a variety of feature

selectors before deciding the best for their problem. Therefore, we propose that users exploit our

framework to run a variety of feature selectors in parallel and then evaluate the feature sets chosen by

each selector using their own specific criteria. Having multiple feature selectors available also provides

the opportunity for ensemble feature selection where the results from a range of feature selectors are

merged to generate the best set of features to use. Feature selection is a combinatorial problem so needs

to be implemented as efficiently as possible particularly on big data sets. We have previously developed

a k-NN classification (Weeks et al., 2003; Hodge & Austin, 2005) and prediction algorithm (Hodge,

Krishnan, Austin & Polak, 2011) using an associative memory (binary) neural network called the

Advanced Uncertain Reasoning Architecture (AURA) (Austin, 1995). This multi-faceted k-NN

motivated a unified feature selection framework exploiting the speed and storage efficiency of the

associative memory neural network. The framework lends itself to parallel and distributed processing

across multiple nodes allowing vast data sets to be processed. This could be done by processing the data

at the same geographical location using a single machine with multiple processing cores (Weeks, Hodge

& Austin, 2002) or at the same geographical location using multiple compute nodes (Weeks, Hodge &

Austin, 2002) or even distributed processing of the data at multiple geographical locations.

Data mining tools such as Weka (Witten and Frank, 2000), Matlab, R and SPSS provide feature

selection algorithms for data mining and analytics. However, these products are designed for small scale

data analysis. Researchers have parallelised individual feature selection algorithms using

MapReduce/Hadoop (Chu et al., 2006; Reggiani, 2013; Singh et al., 2009; Sun, 2014). Data mining

libraries such as Mahout (https://mahout.apache.org) and MLib (https://spark.apache.org/mllib/) and

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

data mining frameworks such as Radoop (https://rapidminer.com/products/radoop/) include a large

number of data mining algorithms including feature selectors. However, they do not explicitly tackle

processing reuse with a view to multi-user and multi-task resource allocation. Zhang. Kumar and Re

(2014) developed a database systems framework for optimised feature selection providing a range of

algorithms. They observed that there are reuse opportunities that could yield orders of magnitude

performance improvements on feature selection workloads as we will also demonstrate here using

AURA in an Apache Hadoop (https://hadoop.apache.org/) framework.

The main contributions of this paper are:

 To extend the AURA framework to parallel and distributed processing of vast data sets in

Apache Hadoop,

 To describe five feature selectors in terms of the AURA framework. Two of the feature selectors

have been implemented in AURA but not using Hadoop (Hodge, O’Keefe & Austin, 2006;

Hodge, Jackson & Austin, 2012) and the other three have not been implemented in AURA

before,

 To theoretically analyse the resulting framework to show how the five feature selectors have

common requirements to enable reuse.

 To theoretically analyse the resulting framework to show how we reduce the number of

computations. The larger the data set then the more important this reduction becomes.

 To demonstrate parallel and distributed processing in the framework allowing Big Data to be

analysed.

In our AURA framework, the feature selectors all use one common data representation. We only need to

process any common elements once and can propagate the common elements to all feature selectors that

require them. Thus, we can rapidly and efficiently determine the best feature selector and the best set of

features to use for each data set under investigation. In section 2, we discuss AURA and related neural

networks and how to store and retrieve data from AURA, section 3 demonstrates how to implement five

feature selection algorithms in the AURA unified framework and section 4 describes parallel and

distributed feature selection using AURA. We than analyse the unified framework in section 5 to

identify common aspects of the five feature selectors and how they can be implemented in the unified

framework in the most efficient way. Section 6 details the overall conclusions from our implementations

and analyses.

2 Binary Neural Networks
AURA (Austin, 1995) is a hetero-associative memory neural network (Palm, 2013). An associative

memory is addressable through its contents and a hetero-associative memory stores associations

between input and output vectors where the vectors are different (Palm, 2013). AURA uses binary

Correlation Matrix Memories (CMMs): binary hetero-associative matrices that store and retrieve

patterns using matrix calculus. They are non-recursive and fully connected. Input vectors (stimuli)

address the CMM rows and output vectors address the CMM columns. Binary neural networks have a

number of advantages compared to standard neural networks including rapid one-pass training, high

levels of data compression, computational simplicity, network transparency, a partial match capability

and a scalable architecture that can be easily mapped onto high performance computing platforms

including parallel and distributed platforms (Weeks, Hodge & Austin, 2002). AURA is implemented as

a C++ software library.

Previous parallel and distributed applications of AURA have included distributed text retrieval (Weeks,

Hodge & Austin, 2002), distributed time-series signal searching (Fletcher, Jackson, Jessop, Liang, &

Austin, 2006) and condition monitoring (Austin, Brewer, Jackson & Hodge, 2010). This new

development will augment these existing techniques and is aimed at these same domains. It will couple

feature selection, classification and prediction with the speed and storage efficiency of a binary neural

network allowing parallel and distributed data mining. This makes AURA ideal to use as the basis of an

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

efficient distributed machine learning framework. A more formal definition of AURA, its components

and methods now follows.

2.1 AURA
The AURA methods use binary input I and output O vectors to efficiently store records in a CMM M as

in equation 1 using the binary rule (Palm, 2013).

𝑴 = ⋁ 𝑰𝒋𝑶𝒋
𝑻 𝑤ℎ𝑒𝑟𝑒 ∨ 𝑖𝑠 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑂𝑅 (1)

Training (construction of a CMM) is a single epoch process with one training step for each input-output

association (each Ij Oj
T
 in equation 1) which equates to one step for each record j in the data set. Thus,

the trained CMM M represents {(I1×𝑶𝟏
𝑻), (I2×𝑶𝟐

𝑻), … (In×𝑶𝒏
𝑻)} superimposed using bitwise or. Ij Oj

T
is

an estimate of the weight matrix W(j) of the synaptic connections of the neural network as a linear

associator with binary weights. W(j) forms a mapping representing the association described by the jth

input/output pair of vectors. As a consequence of using unipolar elements {0, 1} throughout, the value at

each matrix component wij means the existence of an association between elements i and j. The trained

CMM M is then effectively an encoding (correlation) of the N weight matrices W for all N records in the

data set. Individual weights within the weight matrix update using a generalisation of Hebbian learning

(Hebb, 1949) where the state for each synapse (matrix element) is binary valued. Every synapse can

update its weight independently using a local learning rule (Palm, 2013). Local learning is biologically

plausible and computationally simple allowing parallel and rapid execution. The learning process is

illustrated in Figure 1.

Figure 1 Showing a CMM learning input vector In associated with output vector On on the left.

The CMM on the right shows the CMM after five associations Ij Oj
T
. Each column of the CMM

represents a record. Each row represents a feature value for qualitative features or a quantisation

of feature values for quantitative features and each set of rows (shown by the horizontal lines)

represents the set of values or set of quantisations for a particular feature.

For feature selection, the data are stored in the CMM which forms an index of all features in all records.

During training, the input vectors Ij represent the feature and class values and are associated with a

unique output vector Oj representing a record. Figure 1 shows a trained CMM. In this paper, we set only

one bit in the vector Oj indicating the location of the record in the data set, the first record has the first

bit set, the second record has the second bit set etc. Using a single set bit makes the length of Oj

potentially large. However, exploiting a compact list representation (Hodge & Austin, 2001) (more

detail is provided in section 4.3.1) means we can compress the storage representation.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

2.2 Data
The AURA feature selector, classifier and predictor framework can handle qualitative features

(symbolic and discrete numeric) and quantitative features (continuous numeric).

The raw data sets need pre-processing to allow them to be used in the binary AURA framework.

Qualitative features are enumerated and each separate token maps onto an integer (Token ↦Integer)

which identifies the bit to set within the vector. For example, a SEX_TYPE feature would map as (F ↦

0) and (M ↦ 1). Any quantitative features are quantised (mapped to discrete bins) (Hodge & Austin,

2012). Each individual bin maps onto an integer which identifies the bit to set in the input vector. Next,

we describe the simple equi-width quantisation. We note that the Correlation-Based Feature Selector

described in section 3.2 uses a different quantisation technique to determine the bin boundaries.

However, once the boundaries are determined, the mapping to CMM rows is the same as described here.

To quantise quantitative features, a range of input values for feature Ff map onto each bin. Each bin

maps to a unique integer as in equation 2 to index the correct location for the feature in Ij. In this paper,

the range of feature values mapping to each bin is equal to subdivide the feature range into b equi-width

bins across each feature.

𝕽𝒇𝒊
→ 𝒃𝒊𝒏𝒔𝒇𝒌

↦ 𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒇𝒌
+ 𝒐𝒇𝒇𝒔𝒆𝒕(𝑭𝒇)

where 𝑭𝒇 ∈ 𝑭, 𝒇𝒊𝑖𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑭𝒇 and 𝒄𝒂𝒓𝒅𝒊𝒏𝒂𝒍𝒊𝒕𝒚(𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒇𝒌
) ≡ 𝒄𝒂𝒓𝒅𝒊𝒏𝒂𝒍𝒊𝒕𝒚(𝒃𝒊𝒏𝒔𝒇𝒌

)

(2)

In equation 2, offset(Ff) is a cumulative integer offset within the binary vector for each feature Ff, → is

a many-to-one mapping and ↦ is a one-to-one mapping. The offset for the next feature Ff+1 is given by

offset(Ff+1) = offset(Ff

) + nBins(Ff

) where nBins(Ff) is the number of bins for feature Ff

.

 For each record in the data set

 For each feature

 Calculate bin for feature value;

 Set bit in vector as in equation 2;

2.3 AURA Recall
To recall the matches for a query (input) record, we firstly produce a recall input vector Rk by quantising

the target values for each feature to identify the bins (CMM rows) to activate as in equation 3. During

recall, the presentation of recall input vector Rk elicits the recall of output vector Ok as vector Rk

contains all of the addressing information necessary to access and retrieve vector Ok. Recall is

effectively the dot product of the recall input vector Rk and CMM M, as in equation 3 and Figure 2.

𝑺𝑻 = 𝑹𝒌
𝑻 ∙ 𝑴 (3)

If Rk appeared in the training set, we get an integer-valued vector S (the summed output

vector), composed of the required output vector multiplied by a weight based on the dot

product of the input vector with itself. If the recall input Rk is not from the original training

set, then the system will recall the output Ok associated with the closest stored input to Rk,

based on the dot product between the test and training inputs.

Matching is a combinatorial problem but can be achieved in a single pass in AURA. AURA

can also exploit the advantages of sparse vectors (Palm, 2013) during recall by only

activating regions of interest. If the input vector Rk has 1,000 bits indexing 1,000 CMM rows

then only the rows addressed by a set bit in the input vector need be examined (as shown in

figures 2 and 3). For a 10 bit set vector then only 10 of the 1,000 rows are activated. The

input pattern Rk would be said to have a saturation of (10/1000 = 0.01). The total amount of

data that needs to be examined is reduced by a factor that is dependent on this saturation

providing that the data is spread reasonably evenly between the rows and the CMM is

implemented effectively. Using smart encoding schemes can bring the performance

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

improvement resulting from very low saturation input patterns to over 100-fold (Weeks,

Hodge & Austin, 2002).

The AURA technique thresholds the summed output S to produce a binary output vector T as

given in equation 4.

𝑻𝒋 = {
1 if 𝑺𝒋 ≥ 𝜃

 0 otherwise

(4)

For exact match, we use the Willshaw threshold (Willshaw, Buneman & Longuet-Higgins,

1969) to set θ. This sets a bit in the thresholded output vector for every location in the

summed output vector that has a value higher than or equal to θ. The value of θ varies

according to the task. If there are ten features in the data and we want to find all stored

records that match the ten feature values of the input vector then we set θ to 10. Thus, for full

match θ = b
1
, where b

1
is set to the number of set bits in the input vector. For partial

matching, we use the L-Max threshold (Casasent & Telfer, 1992). L-Max thresholding

essentially retrieves at least L top matches. Our AURA software library automatically sets θ

to the highest integer value that will retrieve at least L matches.

Figure 2 Showing a CMM recall. Applying the recall input vector Rk to the CMM M retrieves a

summed integer vector S with the match score for each CMM column. S is then thresholded to

retrieve the matches. The threshold here is either Willshaw with value 3 retrieving all columns

that sum to 3 or more or L-Max with value 2 to retrieve the 2 highest scoring columns.

Feature selection described in section 3 requires both exact matching using Willshaw thresholding and

partial matching using L-Max thresholding.

3 Feature Selection
There are two fundamental approaches to feature selection (Kohavi & John, 1997; Witten & Frank,

2000): (1) filters select the optimal set of features independently of the classifier/predictor algorithm

while (2) wrappers select features which optimise classification/prediction using the algorithm. We

examine the mapping of five filter approaches to the binary AURA architecture. Filter approaches are

more flexible than wrapper approaches as they are not directly coupled to the algorithm and are thus

applicable to a wide variety of classification and prediction algorithms. Our method exploits the high

speed and efficiency of the AURA techniques as feature selection is a combinatorial problem.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

We examine a mutual information approach (Mutual Information Feature Selection (MI) detailed in

section 3.1 that analyses features on an individual basis, a correlation-based multivariate filter approach

(Correlation-based Feature Subset Selection (CFS) detailed in section 3.2 that examines greedily

selected subsets of features, a revised Information Gain approach Gain Ratio (GR) detailed in section

3.3, a feature dependence approach Chi-Square Feature selection(CS) detailed in section 3.4 which is

univariate, and a univariate feature relevance approach Odds Ratio (OR) detailed in section 3.5.

Univariate filter approaches such as MI, CS or OR are quicker than multivariate filters as they do not

need to evaluate all combinations of subsets of features. The advantage of a multivariate filter compared

to a univariate filter lies in the fact that a univariate approach does not account for interactions between

features. Multivariate techniques evaluate the worth of feature subsets by considering both the

individual predictive ability of each feature and the degree of redundancy between the features in the set.

All five feature selection algorithms have their relative strengths. We refer the reader to Forman (2003)

and Varela et al. (2013) for accuracy evaluations of these feature selectors. These papers show that the

best feature selector varies with data and application. Using the CFS attribute selector, Hall and Smith

(1998) found significant improvement in classification accuracy of k-NN on five of the 12 data sets they

evaluated but a significant degradation in accuracy on two data sets. Hence, different feature selectors

are required for different data sets and applications.

We note that the CFS as implemented by Hall (1998) uses an entropy-based quantisation whereas we

have used equi-width quantisation for the other feature selectors (MI, GR, CS and OR). We plan to

investigate unifying the quantisation as a next step. For the purpose of our analysis in section 5, we

assume that all feature selectors are using identical quantisation. We assume that all records are to be

used during feature selection.

3.1 Mutual Information Feature Selection
Wettscherek (1994) described a mutual information feature selection algorithm. The mutual information

between two features is ``the reduction in uncertainty concerning the possible values of one feature that

is obtained when the value of the other feature is determined' ' (Wettscherek, 1994). MI is defined by

equation 5:

𝑴𝑰(𝑭𝒋, 𝑪) = ∑ ∑ 𝒑(𝑪 = 𝒄 ⋀

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

𝑭𝒋 = 𝒇𝒊) ⋅ 𝒍𝒐𝒈𝟐 (
𝒑(𝑪 = 𝒄 ⋀ 𝑭𝒋 = 𝒇𝒊)

𝒑(𝑪 = 𝒄) ⋅ 𝒑(𝑭𝒋 = 𝒇𝒊)
)

𝒃(𝑭𝒋)

𝒊=𝟏

(5)

To calculate p(𝑪 = 𝒄 ⋀ 𝑭𝒋 = 𝒇𝒊), we use AURA to calculate
𝑛(𝐵𝑉𝑓𝑖∧𝐵𝑉𝑐)

𝑁
.

AURA excites the row in the CMM corresponding to feature value fi of feature Fj and the row in the

CMM corresponding to class value c as shown in Figure 3. By thresholding the output vector S at

Willshaw threshold value = 2, we obtain a thresholded output vector with a bit set for every co-

occurrence. We can count these set bits to determine the co-occurrence count. Furthermore, 𝑝(𝐶 = 𝑐)is

the count of the number of set bits n(BVc) in the binary vector (CMM row) for c and 𝑝(𝐹𝑗 = 𝑓𝑖) is the

count of the number of set bits n(BVfi) in the binary vector (CMM row) for fi as used by GR.

The MI calculated using AURA for qualitative features is given by equation 6 where N is the number of

records in the data set, rows(Fj) is the number of CMM rows for feature Fj and nClass is the number of

classes:

𝑴𝑰(𝑭𝒋, 𝑪) = ∑ ∑
𝒏(𝑩𝑽𝒇𝒊 ∧ 𝑩𝑽𝒄)

𝑵

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

⋅ 𝒍𝒐𝒈𝟐 (

𝒏(𝑩𝑽𝒇𝒊 ∧ 𝑩𝑽𝒄)
𝑵

𝒏(𝑩𝑽𝒇𝒊)
𝑵 ⋅

𝒏(𝑩𝑽𝒄)
𝑵

)

𝒓𝒐𝒘𝒔(𝑭𝒋)

𝒊=𝟏

(6)

We can follow the same process for real/discrete ordered numeric features in AURA. In this case, the

mutual information is given by equation 7:

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

𝑴𝑰(𝑭𝒋, 𝑪) = ∑ ∑
𝒏(𝑩𝑽𝒃𝒊 ∧ 𝑩𝑽𝒄)

𝑵

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

⋅ 𝒍𝒐𝒈𝟐 (

𝒏(𝑩𝑽𝒃𝒊 ∧ 𝑩𝑽𝒄)
𝑵

𝒏(𝑩𝑽𝒃𝒊)
𝑵

⋅
𝒏(𝑩𝑽𝒄)

𝑵

)

𝒃𝒊𝒏𝒔(𝑭𝒋)

𝒊=𝟏

(7)

where bins(Fj) is the number of bins (effectively the number of rows) in the CMM for feature Fj and

BVbi is the CMM row for the bin mapped to by feature value fi,

Figure 3 Diagram showing the feature value row and the class values row excited to determine co-

occurrences (𝑪 = 𝒄 ⋀ 𝑭𝒋 = 𝒇𝒊).

The MI feature selector assumes independence of features and scores each feature separately so it is the

user's prerogative to determine the number of features to select. The major drawback of the MI feature

selector along with similar information theoretic approaches, for example Information Gain, is that they

are biased toward features with the largest number of distinct values as this splits the training records

into nearly pure classes. Thus, a feature with a distinct value for each record has a maximal information

score. The CFS and GR feature selectors make adaptations of information theoretic approaches to

prevent this biasing.

3.2 Correlation-based Feature Subset Selection
Hall (1998) proposed the Correlation-based Feature Subset Selection (CFS). It measures the strength of

the correlation between pairs of features. CFS favours feature subsets that contain features that are

highly correlated to the class but uncorrelated to each other to minimise feature redundancy. CFS is thus

based on information theory measured using Information Gain. Hall and Smith (1997) used a modified

Information Gain measure, Symmetrical Uncertainty, (SU) given in equation 8 to prevent bias towards

features with many distinct values (section 3.1). SU estimates the correlation between features by

normalising the value in the range [0, 1]. Two features are completely independent if SU=0 and

completely dependent if SU=1.

𝑺𝑼(𝑭𝒋, 𝑮𝒍) = 𝟐. 𝟎 ⋅ [
𝑬𝒏𝒕(𝑭𝒋) − 𝑬𝒏𝒕(𝑭𝒋 | 𝑮𝒍)

𝑬𝒏𝒕(𝑭𝒋) + 𝑬𝒏𝒕(𝑮𝒍)
]

(8)

where the entropy of a feature Fj for all feature values fi is given as equation 9:

𝑬𝒏𝒕(𝑭𝒋) = − ∑ 𝒑(𝒇𝒊)𝒍𝒐𝒈𝟐(𝒑(𝒇𝒊))
𝒏(𝑭𝒋)

𝒊=𝟏

(9)

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

and the entropy of feature Fj after observing values of feature Gl is given as equation 10:

𝑬𝒏𝒕(𝑭𝒋 | 𝑮𝒍) = − ∑ 𝒑(𝒈𝒌) ∑ 𝒑(𝒇𝒊 | 𝒈𝒌)𝒍𝒐𝒈𝟐(𝒑(𝒇𝒊 | 𝒈𝒌))
𝒏(𝑭𝒋)

𝒊=𝟏

𝒏(𝑮𝒍)

𝒌=𝟏

(10)

Any quantitative features are discretised using Fayyad and Irani's entropy quantisation (Fayyad & Irani,

1993). The bin boundaries are determined using Information Gain and these quantisation bins map the

data into the AURA CMM as previously.

CFS has many similarities to MI when calculating the values in equations 8, 9 and 10 and through using

the same CMM (Figure 3) as noted below.

In the AURA CFS, for each pair of features (Fj ,Gl) to be examined, the CMM is used to calculate

Ent(Fj), Ent(Gl) and Ent(Fj | Gl) from equations 8, 9 and 10. There are three parts to the calculation.

1. Ent(Fj) requires the count of data records for the particular value fi of feature Fj which is n(BVfi) in

equation 6 for qualitative and class features and n(BVbi) in equation 7 for quantitative features.

AURA excites the row in the CMM corresponding to feature value fi of feature Fj. This row is a

binary vector (BV) and is represented by BVfi. A count of bits set on the row gives n(BVfi) from

equation 6 and is achieved by thresholding the output vector Sk from equation 4 at Willshaw value

1.

2. Similarly, Ent(Gl) counts the number of records where feature Gl has value gk.

3. Ent(Fj | Gl) requires the number of co-occurrences of a particular value fi of feature Fj with a

particular value gk of feature Gl n(BVfi ∧ BVgk) for qualitative features and n(BVbi ∧ BVbk) for

quantitative features and between a feature and the class n(BVfi ∧ BVc) and n(BVbi ∧ BVc) for

qualitative and quantitative features respectively. If both the feature value row and the class values

row are excited then the summed output vector will have a two in the column of every record with a

co-occurrence of fi with cj as shown in Figure 3. By thresholding the summed output vector at a

threshold of two, we can find all co-occurrences. We represent this number of bits set in the vector

by n(BVfi ∧ BVc) which is a count of the set bits when BVc is logically anded with BVfi .

CFS determines the feature subsets to evaluate using forward search. Forward search works by greedily

adding features to a subset of selected features until some termination condition is met whereby adding

new features to the subset does not increase the discriminatory power of the subset above a pre-specified

threshold value. The major drawback of CFS is that it cannot handle strongly interacting features (Hall

& Holmes, 2003).

3.3 Gain Ratio Feature Selection
Gain Ratio (GR) (Quinlan, 1992) is a new feature selector for the AURA framework. GR is a modified

Information Gain technique and is used in the popular machine learning decision tree classifier C4.5

(Quinlan, 1992). Information Gain is given in equation 11 for feature Fj and the class C. CFS (section

3.2) modifies Information Gain to prevent biasing toward features with the most values. GR is an

alternative adaptation which considers the number of splits (number of values) of each feature when

calculating the score for each feature using normalisation.

𝑮𝒂𝒊𝒏(𝑭𝒋, 𝑪) = 𝑬𝒏𝒕(𝑭𝒋) − 𝑬𝒏𝒕(𝑭𝒋 | 𝑪) (11)

where Ent(Fj) is defined in equation 9 and Ent(Fj |C) is defined by equation 10. Then Gain Ratio is

defined as equation 12:

𝐺𝒂𝒊𝒏𝑹𝒂𝒕𝒊𝒐(𝑭𝒋, 𝑪) =
𝑮𝒂𝒊𝒏(𝑭𝒋, 𝑪)

𝑰𝒏𝒕𝒓𝒊𝒏𝒔𝒊𝒄𝑽𝒂𝒍𝒖𝒆(𝑭𝒋)

(12)

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

where IntrinsicValue is given by equation 13:

𝑰𝒏𝒕𝒓𝒊𝒏𝒔𝒊𝒄𝑽𝒂𝒍𝒖𝒆(𝑭𝒋) = ∑
𝑺𝒑

𝑵

𝑽

𝒑=𝟏
 𝒍𝒐𝒈𝟐 (

𝑺𝒑

𝑵
)

(13)

and V is the number of feature values (n(Fj)) for qualitative features and number of quantisation bins

n(bi) for quantitative features and Sp is a subset of the records that have Fj=fi for qualitative features or

map to the quantisation bin bin(fi) for quantitative features.

To implement GR using AURA, we train the CMM as described in section 2.1 We can then calculate

Ent(Fj) and Ent(Fj | C) as per the CFS feature selector described in section 3.2 to allow us to calculate

Gain(Fj, C). To calculate IntrinsicValue(Fj) we need to calculate the number of records that have

particular feature values. This is achieved by counting the number of set bits n(BVfi) in the binary vector

(CMM row) for fi for qualitative features or n(BVbi) in the binary vector for the quantisation bin bi for

quantitative features. We can store counts for the various feature values and classes as we proceed so

there is no need to calculate any count more than once.

The main disadvantage of GR is that it tends to favour features with low Intrinsic Value rather than high

gain by overcompensating toward a feature just because its intrinsic information is very low.

3.4 Chi-Square Algorithm
We now demonstrate how to implement a second new feature selector in the AURA framework. The

Chi-Square (CS) (Liu & Setiono, 1995) algorithm is a feature ranker like MI, OR and GR rather than a

feature selector; it scores the features but it is the user's prerogative to select which features to use. CS

assesses the independence between a feature (Fj) and a class (C) and is sensitive to feature interactions

with the class. Features are independent if CS is close to zero. Yang and Pedersen (1997) and Forman

(2003) conducted evaluations of filter feature selectors and found that CS is among the most effective

methods of feature selection for classification.

Chi-Square is defined as equation 14:

𝝌𝟐(𝑭𝒋, 𝑪) = ∑ ∑
𝑵 ∗ (𝒘𝒛 − 𝒚𝒙)𝟐

(𝒘 + 𝒚) ∗ (𝒙 + 𝒛) ∗ (𝒘 + 𝒙) ∗ (𝒚 + 𝒛)

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

𝒃(𝑭𝒋)

𝒊=𝟏

(14)

where b(Fj) is the number of bins (CMM rows) representing feature Fj, nClass is the number of classes,

w is the number of times fi and c co-occur, x is the number of times fi occurs without c, y is the number

of times c occurs without fi, z is the number of times neither c nor fi occur. Thus, CS is predicated on

counting occurrences and co-occurrences and, hence, has many commonalities with MI, CFS and GR.

 Figure 3 shows how to produce a binary output vector (BVfi ∧ BVc) for qualitative features or

(BVbi ∧ BVc) for quantitative features listing the co-occurrences of a feature value and a class

value. It is then simply a case of counting the number of set bits (1s) in the thresholded binary

vector T in Figure 3 to count w.

 To count x for qualitative features, we logically subtract (BVfi ∧ BVc) from the binary vector

(BVfi) to produce a binary vector and count the set bits in the resulting vector. For quantitative

features, we subtract (BVbi ∧ BVc) from (BVbi) and count the set bits in the resulting binary

vector.

 To count y for qualitative features, we can logically subtract (BVfi ∧ BVc) from (BVc) and

count the set bits and likewise for quantitative features we can subtract (BVbi ∧ BVc) from BVc

and count the set bits.

 If we logically or (BVfi) with (BVc), we get a binary vector representing (Fj=fi) ∨(C=c) for

qualitative features. For quantitative features, we can logically or (BVbi) with (BVc) to produce

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

(Fj=bin(fi)) ∨(C=c). If we then logically invert this new binary vector, we retrieve a binary

vector representing z and it is simply a case of counting the set bits to get the count for z.

As with MI and OR, CS is univariate and assesses features on an individual basis selecting the features

with the highest scores, namely the features that interact most with the class.

3.5 Odds Ratio
The third new feature selector is Odds Ratio (OR) (see Forman, 2003). OR is another feature ranker.

Standard OR is a two-class feature ranker although it can be extended to multiple classes. It is often used

in text classification tasks as these are often two-class problems. It performs well particularly when used

with Naïve Bayes Classifiers. OR reflects relevance as the likelihood (odds) of a feature occurring in the

positive class normalized by that of the negative class. OR has many commonalities with MI, CFS and

GR but particularly with CS where it requires the same four calculations w, x, y and z (defined above in

section 3.4). Odds Ratio is defined by equation 15:

𝑶𝑹(𝑭𝒋, 𝑪) = ∑
𝒘𝒛

𝒚𝒙

𝒃(𝑭𝒋)

𝒊=𝟏

(15)

where b(Fj) is the number of bins (CMM rows) representing feature Fj, w is the number of times fi and c

co-occur, x is the number of times fi occurs without c, y is the number of times c occurs without fi, z is

the number of times neither c nor fi occur. Thus, OR is predicated on counting occurrences and co-

occurrences. To avoid division by zero the denominator is set to 1 if yx evaluates to 0.

4 Parallel and Distributed AURA
Feature selection is a combinatorial problem so a fast, efficient and scalable platform will allow rapid

analysis of large and high dimensional data sets. AURA has demonstrated superior training and recall

speed compared to conventional indexing approaches (Hodge & Austin, 2001) such as hashing or

inverted file lists which may be used for data indexing. AURA trains 20 times faster than an inverted file

list and 16 times faster than a hashing algorithm. It is up to 24 times faster than the inverted file list for

recall and up to 14 times faster than the hashing algorithm. AURA k-NN has demonstrated superior

speed compared to conventional k-NN (Hodge & Austin, 2005) and does not suffer the limitations of

other k-NN optimisations such as the KD-tree which only scales to low dimensionality data sets

(McCallum, Nigam & Ungar, 2000). We showed in (Hodge, O’Keefe & Austin, 2006) that using AURA

speeds up the MI feature selector by over 100 times compared to a standard implementation of MI.

For very large data sets, the data may be processed in parallel on one compute node (such as a multi-

core CPU) or across a number of distributed compute nodes. Each compute node in a distributed system

can itself perform parallel processing.

4.1 Parallel AURA
In Weeks, Hodge & Austin (2002), we demonstrated a parallel search implementation of AURA. AURA

can be subdivided across multiple processor cores within a single machine or spread across multiple

connected compute nodes. This parallel processing entails “striping” the CMM across several parallel

subsections. The CMM is effectively subdivided vertically across the output vector as shown in Figure

4. In the data, the number of features m is usually much less than the number of records N, m << N.

Therefore, we subdivide the data along the number of records N (column stripes) as shown in the

leftmost example in Figure 4.

Splitting the data across multiple CMM stripes using columns means that the CMM can store data as

separate rows within a single stripe. Each record is contained within a single stripe. Each separate CMM

stripe outputs a thresholded vector from that CMM stripe.

If the number of features is large then it is possible to subdivide the CMMs further. The CMM is divided

vertically by the records (column stripes) as before and then the column stripes are subdivided by the

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

input features (row stripes). Subdivision by input features (row stripes) is shown in the rightmost

diagram in figure 4. Dividing the CMM using the features (row stripes) makes assimilating the results

more complex than assimilating the results for column stripes. Each row stripe produces a summed

output vector containing column subtotals for those features within the stripe. The column subtotals

need to be assimilated from all row stripes that hold data for that column. Thus, we sum these column

subtotals to produce a column stripe vector C holding the overall sum for each column in that stripe.

Row striping involves assimilating integer vectors of length c where c is the number of columns for the

column subdivision (column stripe).

Figure 4 If a CMM contains large data it can be subdivided (striped) across a number of CMM

stripes. In the left hand figure, the CMM is striped vertically (by time) and in the right hand

figure the CMM is striped horizontally (be feature subsets). On the left, each CMM stripe

produces a thresholded output vector Tn containing the top k matches (and their respective scores)

for that stripe. All {Tn} are aggregated to form a single output vector T which is thresholded to list

the top matches overall. On the right, each stripe outputs a summed output vector Sn. All Sn are

summed to produce an overall summed output vector which is thresholded to list the top matches

overall.

4.2 Distributed AURA
There are two central challenges for distributed feature selection: firstly, maintaining a distributed data

archive so that data does not have to be moved to a central repository and secondly, orchestrating the

search process across the distributed data. Different data and applications will have different criteria that

they wish to optimise. These could be optimising communication overhead, processing speed, memory

usage or combinations of these criteria. Hence, there is unlikely to be a single best technique for

distribution.

To distribute AURA, we use the striping mechanisms detailed in the previous section. However, rather

than spreading the stripes within the cores of a multicore processor, we distribute the stripes across

computers within a distributed network. The stripes need to be distributed for maximum efficiency. This

can be to maximise processing speed, to minimise memory usage, to minimise communication overhead

or a combination of criteria. Distributing the stripes requires an efficient distribution mechanism to

underpin the procedure.

Orchestrated search with minimal data movement is provided by the open source software project:

Apache Hadoop (Shvachko, Hairong, Radia & Chansler, 2010). Hadoop operates on the premise that

“moving computation is cheaper than moving data” (Borthakur, 2008). Hadoop allows the distributed

processing of large data sets across clusters of commodity servers. It provides load balancing, is highly

scalable and has a very high degree of fault tolerance. It is able to run on commodity hardware due to its

ability to detect and handle failures at the application layer. There are multiple copies of the stored data

so, if one server or node is unavailable, its data can be automatically replicated from a known good

copy. If a compute node fails then Hadoop automatically re-balances the work load on the remaining

nodes. Hadoop has demonstrated high performance for a wide variety of tasks (Borthakur et al., 2011).

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

It was initially aimed at batch processing tasks so is ideally suited to the task of feature selection where

the feature selector is trained with the training data and feature selection is run once on a large batch of

test data. Hadoop is currently developing real-time processing capabilities. In this paper, we focus on

batch processing and the implementation details of the five feature selectors using AURA with Hadoop.

Hadoop is highly configurable and can be optimised to the user’s specific requirements, for example,

optimising to minimise memory overhead, optimising for fastest processing or optimising to reduce

communication overhead. Hence, we do not attempt to evaluate Hadoop here. Instead, we focus on

describing how to map AURA CMMs to Hadoop to create a feature evaluation framework.

There are two parts of Hadoop that we consider here: YARN which assigns work to the nodes in a

cluster and the Hadoop Distributed File System (HDFS) which is a distributed file system spanning all

the nodes in the Hadoop cluster with a single namespace.

YARN (Kumar et al., 2013) supersedes MapReduce in Hadoop. YARN is able to run existing

MapReduce applications. YARN decouples resource management and scheduling from the data

processing. This means that data can continue to be streamed into the system simultaneously with

MapReduce batch jobs. YARN has a central resource manager that reconciles Hadoop system resources

according to constraints such as queue capacities or user-limits. Node manager agents monitor the

processing operations of individual nodes in the cluster. The processing is controlled by an

ApplicationMaster which negotiates resources from the central resource manager and works with the

node manager agents to execute and monitor the tasks. The actual MapReduce procedure, divides

(maps) the processing into separate chunks which are processed in parallel. The outputs of the

processing tasks are combined (reduced) to generate a single result. The input and output data for

MapReduce can be stored in HDFS on the same compute nodes used for processing the MapReduce

jobs. This produces a very high aggregate bandwidth across the cluster. The user’s applications specify

the input/output locations and supply map and reduce functions via implementations of appropriate

interfaces and/or abstract-classes. The framework takes care of distributing the software/configuration,

scheduling tasks, monitoring the tasks and re-executing any failed tasks.

HDFS links together the file systems on many local nodes to make them into one big file system. HDFS

assumes nodes will fail, so it achieves reliability by replicating data across multiple nodes. Processing

data in situ on local nodes is efficient compared to moving the data over the network to a single

processing node. This local processing architecture of Hadoop has resulted in very good performance

(Rutman, 2011) on cheap computer clusters even with relatively slow network connections (such as 1

Gig Ethernet) (Rutman, 2011). Hence, Hadoop is ideal to underpin our distributed processing

architecture.

4.3 Hadoop Feature Selection
Feature selection is a two part procedure. A training phase described in section 2.1 trains the data into

the CMMs. A test phase then applies test data to the trained CMMs and correlates the results to produce

feature selections. Each compute node holds a CMM, CMM stripe or set of CMM stripes that stores all

local data. During training, CMMs are not immutable as each association in equation 1 changes the

underlying CMM so Hadoop MapReduce is not a suitable paradigm for CMM training. Hence, the

CMMs are trained in a conventional fashion and uploaded to HDFS once trained. If the data stored in a

node's CMM exceed the memory capacity of that node then the CMM is subdivided into stripes as

described in section 4.1 and shown in figures 4 and 5. The set of all CMM stripes at a node stores all

data for that node. Every CMM stripe across the distributed system has to be coordinated so that record

identifiers (such as timestamps) are matched to allow the CMM sum and threshold. Sum and threshold

is column-based and relies on columns representing the same datum. When the results from different

CMMs are unified then the columns from the various CMMs need to be aligned. The system is very

flexible; we only need to access relevant CMM stripes so we can access subsets of data. The approach is

a combination of the striping described above in section 4.1 and the CMM distribution described in

section 4.2 with Hadoop orchestrating the search.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

While the CMMs are being trained it is expedient to generate a MapReduce input file of input vectors to

be used to produce the feature selections. These files will be split into batches by the MapReduce

software and the results will be correlated to produce the feature selection scores. There is one input file

per CMM stripe and the input vectors in each file represent the set of input vectors for recall to produce

the feature selections.

CMM

Stripe

Stripe

Stripe

Stripe

Stripe

Stripe

Stripe

Stripe

Stripe

Recall

Recall

Recall

Recall

Recall

Recall

Recall

Recall

Recall

+

+

+

+

+

+

+

+

Stripe =

=

=

=

Slice Map Reduce Aggregate
Threshold

Figure 5 Figure showing distributed AURA recall in Hadoop. In the figure, there are three

distributed compute nodes as shown by the shading with three CMM stripes per node (3 CPU

cores per node and one stripe per core). Thus, the top three stripes are on one compute node

spread across three cores. In the map phase, the required input vectors are applied to the CMM

stripes and the summed output vector is recalled for each stripe. The summed output vector can

be thresholded now or later following aggregation as described in section 4.3.1. During the reduce

phase, these output vectors are aggregated at each compute node giving three aggregated vectors.

Finally, the three vectors are combined.

Each CMM stripe that receives a search request, executes the recall process described in section 2.3. The

candidate matches are the set of stored patterns that are close to the query in the feature space. In

Hadoop the processing is coordinated by MapReduce (Shvachko et al., 2010). Hadoop YARN schedules

the MapReduce tasks independently of the problem being solved. There is one Map job for each input

file. Therefore, we model feature selection as a series of MapReduce jobs with each job representing one

CMM stripe and the tasks are batches of file iterations (batch processing subsets of records) from the

test data. The tasks are processed in parallel on distributed nodes. Each CMM stripe is read into a job.

The recall function for CMM stripes is written as a Map task. Each MapReduce job invokes multiple

Map tasks, each task represents a batch of recalls for a subset of input records, the batches execute in

parallel. The Hadoop Mapper keeps track of the output vector versus record ID pairs so we know which

output vector is associated with which record. The Reduce tasks perform the integer output vector

thresholding as described in section 2.3 and write the data back into the file associated with the CMM

stripe. Multiple feature selectors can be run in parallel, each executing as a series of MapReduce jobs.

The CMMs for feature selection are immutable so subsequent iterations do not depend on the results (or

changes) of the CMMs.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

This whole MapReduce process has to be coordinated. If the MapReduce process is running at a single

location then it can be coordinated as a Java class that initiates the individual jobs and then coordinates

the results from all jobs to produce the feature selection scores. If the processing is geographically

distributed then it needs a more complete coordinator. This can be achieved using for example the UNIX

curl command and a monitor process that determines when curl has collected new data. Alternatively, it

can be achieved using a distributed stream processor such as Apache Flume (https://flume.apache.org/)

or Storm (https://storm.incubator.apache.org/). Essentially, whichever tool is used this is a three part

process: initiate the feature selection process at each of the distributed nodes; retrieve the results data

from the distributed nodes; and, monitor when the results have been returned from all nodes and

combine them into a single unified result.

4.3.1 Stripe vectors

For Big data, the CMMs are too big to store in a one computer’s memory. Hence, they need to be striped

across multiple computers as in figure 4 and figure 5. Each CMM stripe returns a vector representing the

matching results for the input vector with respect to that CMM stripe. Palm (2013) has extensively

analysed representations in associative memories and found that sparse representations are optimal

because the number of matrix operations is proportional to the number of set bits in the vectors. A sparse

pattern will have fewest set bits and require fewest operations. For our feature selector, each CMM

stripe can return its results as

1. an integer vector Sk (un-thresholded),

2. a thresholded vector Tk or

3. a list of the set bits in the thresholded vector.

Option 1 is the least efficient as, potentially, every column could have an integer score so the vector

would be an integer vector of length N where N is the number of data records stored. This integer vector

can be thresholded for option 2 which produces a binary vector. A binary vector requires less storage

capacity than an integer vector (1 bit per element for the binary vector compared to 16 or 32 bits per

element for the integer vector). For option 3, we would return a list of the set bits. For this we can

exploit a compact list representation for representing binary vectors (Hodge & Austin, 2001). This

compact list representation is similar to the pointer representation used in associative memories (Bentz,

Hagstroem & Palm, 1997). It ensures that retrieval is proportional to the number of set bits in the

thresholded output vector so is fast and scalable. The feature selection process produces a large set of

output vectors from the CMM stripes; namely, all vectors necessary for all feature selectors. Option 3

allows AURA to be used for distributed processing with data sets of millions of records while using a

relatively small amount of memory and with a massively reduced communication overhead. For

example, if there were 10,000,000 records in the data set then a vector would have 10,000,000 elements.

If only three records match (records; 8, 10 and 11) then processing {8,10,11} as indices requires much

less time, memory and communication bandwidth compared to processing 10,000,000 binary digits.

Hence, wherever possible we use option 3.

The results need to be amalgamated for each feature selector to produce the feature scores for that

feature selector. The system maintains an index of what data are stored where and what each datum

represents so the coordinating node can coordinate the matching, receive all matching data and

determine the set of best matches across all searchable data. Each feature selector will have a separate

amalgamate program running at the coordinating node. This program uses the required vectors and set

bit counts returned from AURA to produce the feature score as described in sections 3 and 5.

5 Analysis of AURA Feature Selection
We demonstrate theoretically using a worked example that our framework vastly reduces the number of

required computations compared to processing the feature selectors separately. The worked example

provides an easy and simple illustration of the method on a small data size. We envisage using the

feature selector on Big Data sets where Big Data refers to data sets that require at a minimum multiple

CPUs but more likely multiple compute nodes to process in tractable time for the application. The larger

the data set and the more time critical the data processing then the more important our computation

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

reduction will become. MI, CFS, CS, OR and GR can all use a single CMM representation for the data

such as the CMM in Figure 6. This overall CMM is amenable to striping across the processing nodes to

allow Hadoop processing in a similar fashion to Figure 4 and Figure 5. The framework is underpinned

by Hadoop which has been thoroughly evaluated in the literature (Kumar et al., 2013). Hadoop is highly

configurable large data set framework that can be optimised to the user’s specific requirements, for

example, optimising to minimise memory overhead, optimising for fastest processing or optimising to

reduce communication overhead. Hence, we do not attempt to evaluate Hadoop itself here but just focus

on how we minimise the number of feature selection computations to minimise processing. Users will

use our framework to select the best feature selector for their data and application using their own

specific criteria.

The feature selectors in section 3 have many commonalities when implemented in the unified AURA

framework. We can demonstrate the commonalities by analysing 12 records from the Iris data set

(Fisher, 1936). The Iris data are illustrated in Figure 6 (left) when trained into the CMM. The 12 records

have been trained into a CMM using the four features and the class. Each feature is quantitative and has

been subdivided into five quantisation bins of equal width. Figure 6 (right) shows the same data divided

into four CMM stripes (CMMStripe1, CMMStripe2, CMMStripe3 and CMMStripe4). The horizontal

(row-based) striping means that the features “sepal len” and “sepal width” are in the top stripes and

“petal len”, “petal width” and the class are in the bottom two stripes. The vertical (column-based)

striping means that the first 6 data records are stored in the left two stripes and the other 6 records in the

right two stripes. If the data were time-series or sequential, the column-based striping would form two

time frames with the oldest data in the left two stripes and the newest data in the right two stripes. The

input vectors are stored in a file for each CMM or CMM stripe. These files can then be batch processed

in the Hadoop framework described. Within the evaluation, we consider how the data and CMMs would

be accommodated in our Hadoop framework.

MI, CFS, CS, OR and GR all use BVfi (the binary vector where (Fj=fi)), BVbi (the binary vector

representing the quantisation bin bin(fi)) and BVc (the binary vector representing all records that have

class label c). These only need to be extracted once and used in each feature selector as appropriate. For

example in Figure 6, if we want all records where 1.12 ≤ petal width < 1.58 then we activate row 17 of

the CMM. We can then Willshaw threshold the resultant integer output vector S (000011110000) at

level 1 and retrieve the binary thresholded vector T with a bit set for every matching record (bits

4,5,6,7). For the Hadoop distributed version, only the relevant CMM stripes are queried in Figure 6

(right). In this case, activating row 17 of CMMStripe3 and CMMStripe4 queries the relevant data.

CMMStripe3 will output thresholded vector T3 with bits 5 and 6 set and CMMStripe4 will output T4

with bits 7 and 8 set. T3 and T4 can be concatenated to form a single vector thresholded vector T (as in

figure 4) with bits 4, 5, 6 and 7 set. For the Hadoop distributed version, each CMM stripe CMMStripeX

outputs a list of the indices of the set bits in TX which are collected by the coordinator.

CFS, GR and MI all require nBVfi a count of the number of data records where a particular feature has a

particular value Fj=fi and BVc a count of the number of records where the class has a particular label

C=c. To count the number of records where 1.12 ≤ petal width < 1.58, we retrieve the binary

thresholded vector as above and count the number of set bits (bits 4, 5, 6 and 7 are set giving 4 matching

records). For the Hadoop approach, we coordinate the retrieval as above, concatenate the lists to produce

a single overall list of set bits and count the list length. T3 has bits 4 and 5 set and T4 has bits 6 and 7 set

giving 4 matching records in total.

CFS, CS, OR, GR and MI all use (BVfi ∧ BVc) and (BVbi ∧ BVv) for qualitative and quantitative

features respectively. For example, we can find all records where 4.6 ≤ sepal len < 5.1 and the class is A

by activating rows 0 and 20 of the CMM, thresholding S (1222000000) at Willshaw level 2 to give T

with three bits set: column 1, 2 and 3 in Figure 6 (left). This takes more coordinating in the Hadoop

framework as the data for the feature value may not be stored with the data for the class; they may be in

different CMM stripes. In Figure 6 (right), activate row 0 in CMMStripe1 and CMMStripe2 and then

activate row 20 in CMMStripe3 and CMMStripe4. The coordinating program needs to correlate the

sections of the vector for the feature value and correlate the sections of the vector for the class to form a

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

single vector. CMMStripe1 needs to be added (summed) with the output integer vector of CMMStripe3

to give S1+3 and CMMStripe2 needs to be added (summed) with the output integer vector of

CMMStripe4 to give S2+4. The summed vectors can then be thresholded at 2 to give T1+3 with bits 1, 2

and 3 set (three matching records) and T2+4 with no bits set (no matches). The two thresholded output

vectors are concatenated to produce T with bits 1, 2 and 3 set. If the thresholded vectors are stored as

lists of indices (see section 4.3.1) then this is simply a task of finding the common indices between the

two vectors.

Figure 6 The 12 records from the iris data set, quantised and trained into a single AURA CMM

(left) and subdivided across 4 stripes of the CMM (right). The letters in rows 20-22 indicate the

class of the record: A=Iris-setosa, B=Iris-versicolor, C=Iris-virginica.

MI, CFS, CS, OR and GR all also need a count of the conjunction, that is n(BVfi ∧ BVc) and n(BVbi ∧
 BVc) for qualitative and quantitative features respectively. Hence, we retrieve the binary thresholded

vector T as above and count the set bits.

Rather than calculating these elements multiple times, we can take advantage of the commonalities by

calculating each common value, binary vector or count only once and propagating the result to each

feature selector that requires it. Following these common calculations, all necessary calculations will

have been made for MI and GR. CFS just requires the pairwise feature versus feature analyses (BVbi ∧

BVbk). These are performed in the same way as the feature versus class analyses above. CS and OR

require the manipulation of some of the binary vectors to produce the logical or vectors. This requires

the coordination of the vectors. To find (BVbi) ∨ (BVc), we combine the list of set bits for (BVbi) with

the list of set bits for (BVc) and count the resulting list length. By calculating the common elements first,

the remainder of the calculations can be performed for each feature selector using either this CMM and

processing the algorithms in series or by generating multiple copies of the CMM and processing them in

parallel if sufficient processing capacity is available.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

Once all of the binary vectors have been retrieved by the distributed Hadoop system, they need to be

processed to calculate the feature scores as per section 3 using the various feature selectors. A

coordinator program organises this in parallel. There is one feature score calculation process per feature

selector (currently five feature selectors are described here).

For the Iris data set, there are 20 feature row activations 20 * BVbi and three class activations 3 * BVc.

To calculate (BVbi ∧ BVc) requires 20 x 3 = 60 calculations. Hence, there are 83 common calculations

(20+3+60) across all five feature selectors. CFS then needs to calculate (BVbi ∧ BVbk) which would

require 19! calculations if every feature value was compared to every other. However, CFS uses greedy

forward search so that the number of comparisons is minimised (Hall, 1998) to a worst case of (20
2
-

20)/2=190. We have already extracted all 20 * BVbi binary vectors so CFS needs 190 logical ands but

no CMM accesses. We have saved a minimum of 20 CMM accesses for BVbi and a maximum of 190

CMM accesses for worst case forward search. Manipulating the binary vectors can be performed at the

coordinating node and in parallel as a Hadoop batch process. CS requires the logical or vectors (BVbi ∨

BVc). Again, we already have all 20 * BVbi binary vectors and all 3 * BVc binary vectors so there are

20 x 3=60 logical ors to perform. Thus, we have saved a minimum of 20 * BVbi + 3 * BVc = 23 CMM

accesses and potentially 60 CMM accesses if all 60 or operations were performed in the CMM. Thus MI

requires 83 calculations, GR also requires 83, CFS requires 83 plus 190 and CS requires 83 plus 60.

Without our reductions there would be 83+83+83+190+83+60 calculations. We have reduced this to

83+190+60. Additionally, 190+60 of these can use vectors already extracted so there is no need to

access the CMM. We have saved 3 * 83=249 recalls from the CMM by finding common aspects, have

removed a minimum of 20+23 further CMM recalls and have reduced the other calculations to logical

operations on stored binary vectors. The minimum saving on CMM recalls is given by equation 16.

𝑆𝑎𝑣𝑖𝑛𝑔 = (3 × (𝑛(𝐵𝑉𝑏𝑖) + 𝑛(𝐵𝑉𝑐) + (𝑛(𝐵𝑉𝑏𝑖) × 𝑛(𝐵𝑉𝑐)))) + ((2 × 𝑛(𝐵𝑉𝑏𝑖)) + 𝑛(𝐵𝑉𝑐))

(16)

6 Conclusion
Massive and complex data sources pose challenges for data mining but they also hold many

opportunities. New information can be uncovered, vast timelines of data are available for analysis and

the data models learned will be increasingly rich as the training data expands. How the data is

represented needs to be carefully considered including careful preparation such as cleaning and selecting

feature subsets. In this paper we have introduced a distributed processing framework for feature

selection using the AURA neural network and Apache Hadoop. There are currently five feature selectors

available which may be used independently or coupled with the AURA k-NN for classification or

prediction.

All five feature selectors can use a single trained CMM. We have identified common aspects of the five

feature selectors when they are implemented in the AURA framework and indicated how these common

aspects may be processed as a common block. All remaining aspects of the feature selectors can then be

implemented in parallel using duplicate copies of the trained CMM as compute resources allow. CMMs

lend themselves to distributed processing as they can be striped (split) using both row-based and

column-based striping. The CMM created for feature selection can be used directly for the AURA k-NN

for classification or prediction and any unwanted features (those not selected by the feature selection)

can simply be ignored (masked off). Alternatively, the CMM can be retrained with only the required

data if processing speed and memory usage at recall time are the primary concern.

The AURA neural architecture has demonstrated superior training and recall speed compared to

conventional indexing approaches such as hashing or inverted file lists (Hodge & Austin, 2001) and an

AURA-based implementation of the MI feature selector was over 100 times faster than a standard

implementation (Hodge, O’Keefe & Austin, 2006). This is further augmented by using the scalability of

Hadoop. This combined platform allows rapid processing of feature selectors on large and high

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

dimensional data sets that cannot be processed on standard computers. We envisage using the method on

data sets that require at a minimum multiple CPUs but more likely multiple compute nodes to process.

The method is also best suited to data mining and analytics that processes a Big Data file in a longer

term processing run such as overnight rather than on-line transaction processing which requires near

real-time updating. The user can then evaluate the feature sets chosen by the feature selectors against

their own data to determine the best feature selector and the best set of features. Additionally, each

feature selector (MI, CFS, GR, CS and OR) generates scores for the features which can be used to

weight the features during machine learning.

The technique is flexible and easily extended to other feature selection algorithms. By implementing a

range of feature selectors in a single framework, we can also investigate ensemble feature selection

where the results from a range of feature selectors are merged to generate a consensus overview of the

best set of features to use.

We will investigate whether we can use Apache Spark, the in-memory data analytics and cluster

computing framework (https://spark.apache.org/) to underpin the AURA feature selection framework.

Apache Spark is closely coupled with Hadoop and allows YARN and MapReduce jobs to be run. Spark

enables in-memory computing and is reputed to be up to 100 times faster than MapReduce (see

https://spark.apache.org/). CMMs are optimised for in-memory processing so fit well with the Spark

paradigm. A related development, Optimized Row Columnar (ORC) file format is currently being

adopted by Spark. ORC is a file storage format that is tightly integrated with HDFS and provides

optimizations for both read performance and data compression. An ORC file divides the data into

groups of row data called stripes. This fits with the stripes used in AURA CMMs and would allow a

direct mapping from ORC data file stripes to CMM stripes for optimised performance.

We plan to use the feature selection framework that we have developed in this paper in conjunction

with the AURA k-NN for traffic analysis (Hodge, Jackson, & Austin, 2012; Hodge, Krishnan, Austin

& Polak, 2010; Hodge, Krishnan, Austin & Polak, 2011), condition monitoring (Austin, Brewer,

Jackson & Hodge, 2010) and railway infrastructure monitoring in the NEWTON Project (Hodge,

O’Keefe, Weeks & Moulds, 2015).

7 Acknowledgements
This work was supported by UK Engineering and Physical Sciences Research Council (Grant

EP/J012343/1).

8 References

Austin, J. (1995). Distributed associative memories for high speed symbolic reasoning. In R. Sun & F.

Alexandre (Eds), IJCAI '95 Working Notes of Workshop on Connectionist-Symbolic Integration: From

Unified to Hybrid Approaches, (pp. 87-93), Montreal, Quebec.

Austin, J., Brewer, G., Jackson T., & Hodge V. (2010). AURA-Alert: The use of binary associative

memories for condition monitoring applications. In Procs 7th Int’l Conf. on Condition Monitoring and

Machinery Failure Prevention Technologies, (pp. 699-711). Red Hook, USA: Curran Associates.

Bentz, H., Hagstroem M., & Palm G. (1997). Selection of relevant features and examples in machine

learning. Neural Networks, 2(4), 289 - 293.

Borthakur, D. (2008). HDFS architecture guide. HADOOP APACHE PROJECT

http://pristinespringsangus.com/hadoop/docs/hdfs_design.pdf

Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H., ... & Aiyer, A.

(2011). Apache Hadoop goes Realtime at Facebook. In Procs 2011 ACM SIGMOD International

Conference on Management of data , (pp. 1071-1080). New York: ACM.

https://spark.apache.org/
https://spark.apache.org/

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

Casasent, D. & Telfer ,B. (1992). High capacity pattern recognition associative processors. Neural

Networks, 5(4):251-261.

Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., & Olukotun, K. (2007). Map-reduce for machine

learning on multicore. Advances in Neural Information Processing Systems, 19, pp. 281–288. MIT

Press.

Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3):131-

156.

Ertöz, L., Steinbach, M., & Kumar, V. (2003) Finding clusters of different sizes, shapes, and densities

in noisy, high dimensional data. In Proc. 3rd SIAM Int’l Conf. on Data Mining, (pp. 47-58).

Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for

classification learning. In Procs Int’l Joint Conf. on Artificial Intelligence, (pp. 1022-1027). San

Mateo, USA: Morgan Kaufmann.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 7(2),

179-188.

Fletcher, M., Jackson, T., Jessop, M., Liang, B., & Austin, J. (2006). The signal data explorer: A high

performance grid based signal search tool for use in distributed diagnostic applications. In CCGrid

2006 - 6th IEEE Int’l Symp. on Cluster Computing and the Grid, (pp. 217-224), Singapore.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. J.

Mach. Learn. Res., 3, 1289-1305.

Franks, B. (2012). Taming the big data tidal wave: Finding opportunities in huge data streams with

advanced analytics. Hoboken, NJ: John Wiley & Sons.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn.

Res., 3, 1157-1182.

Guyon, I., Weston, J., Barnhill S., & Vapnik, V. (2002). Gene selection for cancer classification using

support vector machines. Mach. Learn., 46(1), 389-422.

Hall, M. (1998). Correlation-based Feature Subset Selection for Machine Learning. (Unpublished

doctoral dissertation). University of Waikato, Hamilton, New Zealand.

Hall, M., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data

mining. IEEE Trans. on Knowl. & Data Eng., 15(6), 1437-1447.

Hall, M., & Smith, L. (1997). Feature subset selection: a correlation based filter approach. In Int’l

Conf. on Neural Information Processing and Intelligent Information Systems, (pp. 855-858). Berlin:

Springer.

Hall, M., & Smith, L. (1998). Practical feature subset selection for machine learning. In Procs of the

21st Australian Computer Science Conf., (pp. 181-191). Berlin: Springer.

Han, J., & Kamber, M. (2006). Data mining: concepts and techniques: The Morgan Kaufmann Series

in Data Management Systems, Elsevier.

Hebb, D. (1949). The organization of behavior: a neuropsychological theory, New York: Wiley.

Hodge, V. (2011). Outlier and Anomaly Detection: A Survey of Outlier and Anomaly Detection

Methods. LAP LAMBERT Academic Publishing.

Hodge, V., & Austin, J. (2001). An Evaluation of Standard Retrieval Algorithms and a Binary Neural

Approach. Neural Networks, 14(3).

Hodge, V., & Austin, J. (2005). A binary neural k-nearest neighbour technique. Knowl. Inf. Syst.,

8(3):276-292, 2005.

Hodge, V., & Austin J. (2012). Discretisation of Data in a Binary Neural k-Nearest Neighbour

Algorithm. Tech. Report YCS-2012-473, UK: University of York, Department of Computer Science.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

Hodge, V., Jackson, T., & Austin, J. (2012). A binary neural network framework for attribute selection

and prediction. In 4th Int’l Conf. on Neural Computation Theory and Applications, Barcelona, Spain.

Hodge, V., Krishnan, R., Austin J., & Polak, J. (2010). A computationally efficient method for on-line

identification of traffic control intervention measures. In 42nd Annual UTSG Conf., University of

Plymouth, UK.

Hodge, V., Krishnan, R., Austin J., & Polak, J. (2011). Short-term traffic prediction using a binary

neural network. In 43rd Annual UTSG Conf., Milton Keynes, UK.

Hodge, V., O'Keefe, S., & Austin, J. (2006). A binary neural decision table classifier.

NeuroComputing, 69(16-18), 1850-1859.

Hodge, V., O'Keefe, S., Weeks, M., & Moulds, A. (2015). Wireless Sensor Networks for Condition

Monitoring in the Railway Industry: A Survey, IEEE Trans on Intelligent Transportation Systems,

16(3), 1088–1106.

Jolliffe, I. (2002). Principal Component Analysis. (2
nd

 Ed.). New York, USA: Springer-Verlag.

Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artif. Intell. J., Special Issue on

Relevance, 97(1-2), 273-324.

Kumar V., et al. (2013). Apache Hadoop YARN: yet another resource negotiator. In Proceedings of the

4th annual Symposium on Cloud Computing (SOCC '13). ACM, New York, NY, USA.

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety. Application

Delivery Strategies by META Group.

Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature selection: An ever evolving frontier in

data mining. J. Mach. Learn. Res., 10, 4-13.

Liu, H., & Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes. In Procs

IEEE 7th Int’l Conf. on Tools with Artificial Intelligence, (pp. 338-391). IEEE.

Liu, H., & Setiono, R. (1996). A Probabilistic Approach to Feature Selection - A Filter Solution. In

Procs of 13th Int’l Conf. on Machine Learning (pp. 319-327). San Mateo, USA: Morgan Kaufmann.

McCallum, A., Nigam, K., & Ungar, L. (2000). Efficient clustering of high-dimensional data sets with

application to reference matching. In Procs 6th ACM SIGKDD Int’l Conf. on Knowledge Discovery &

Data Mining (pp. 169-178). New York: ACM.

Palm, G. (2013). Neural associative memories and sparse coding, Neural Networks, 37, 165-171.

Quinlan, J. (1986). Induction of decision trees. Mach. Learn., 1, 81-106.

Quinlan, J. (1992). C4.5 Programs for Machine Learning. San Mateo, USA: Morgan Kaufmann.

Reggiani, C. (2013). Scaling feature selection algorithms using MapReduce on Apache Hadoop.

(Master’s thesis, Politecnico di Milano, Italy). Retrieved from

https://www.politesi.polimi.it/bitstream/10589/81201/1/2013_07_Reggiani.pdf.

Rutman, N. (2011). Map/reduce on lustre, (white paper). Technical report, Havant, UK: Xyratex

Technology Limited.

Shvachko, K., Hairong, K., Radia S., & Chansler, R. (2010). The Hadoop distributed file store system.

In Procs IEEE 26th Symp. on Mass Storage Systems and Technologies (pp. 1-10). IEEE.

Singh, S., Kubica, J., Larsen, S., & Sorokina, D. (2009). Parallel Large Scale Feature Selection for

Logistic Regression. In, SIAM International Conference on Data Mining (SDM) (pp. 1172-1183).

Sun, Z. (2014). Parallel feature selection based on MapReduce. In, Computer Engineering and

Networking Lecture Notes in Electrical Engineering, Vol. 277, (pp. 299-306). Springer.

Varela, P., Martins, A., Aguiar, P., & Figueiredo, M. (2013). An Empirical Study of Feature Selection

for Sentiment Analysis. In, 9th Conference on Telecommunications, Conftele 2013, Castelo Branco.

Manuscript is intended for the Special Issue: Neural Network Learning in Big Data

Weeks, M., Hodge, V., & Austin, J. (2002). A hardware accelerated novel IR system. In Procs 10th

Euromicro Workshop (PDP-2002). IEEE Computer Society.

Weeks, M., Hodge, V., O’Keefe, S., Austin, J., & Lees, K. (2003). Improved AURA k-nearest

neighbour approach. In Artificial Neural Nets Problem Solving Methods (pp. 663-670). Berlin:

Springer.

Wettscherek, D. (1994). A study of distance-based machine learning algorithms. (Unpublished doctoral

dissertation). Oregon State University, Corvallis, USA.

Willshaw, D., Buneman O., & Longuet-Higgins, H. (1969). Non-holographic associative memory.

Nature, 222, 960-962.

Witten, I., & Frank, E. (2000). Data Mining: practical machine learning tools and techniques with

Java implementations. San Mateo, USA: Morgan Kaufmann.

Yang, Y., & Pedersen, J. (1997). A comparative study on feature selection in text categorization. In

Procs 14th Int’l Conf. on Machine Learning (pp. 412-420).

Zhang, C., Kumar, A., & Ré, C. (2014). Materialization optimizations for feature selection workloads.

In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (pp.

265-276). ACM.

Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class Hadoop

and streaming data. New York: McGraw-Hill.

