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Abstract 

In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and 

distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural 

network which is highly amenable to parallel and distributed processing and fits with the Hadoop 

paradigm. There are many feature selectors described in the literature which all have various strengths 

and weaknesses. We present the implementation details of five feature selection algorithms constructed 

using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and 

distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be 

processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) 

allowing multiple feature selectors to be compared. We identify commonalities among the five features 

selectors. All can be processed in the framework using a single representation and the overall processing 

can also be greatly reduced by only processing the common aspects of the feature selectors once and 

propagating these aspects across all five feature selectors as necessary. This allows the best feature 

selector and the actual features to select to be identified for large and high dimensional data sets through 

exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in 

Hadoop. 
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1 Introduction 

The meaning of “big” with respect to data is specific to each application domain and dependent on the 

computational resources available. Here we define “Big Data” as large, dynamic collections of data that 

cannot be processed using traditional techniques, a definition adapted from (Zikopoulos & Eaton, 2011; 

Franks, 2012). Today, data is generated continually by an increasing range of processes and in ever 

increasing quantities driven by Big Data mechanisms such as cloud computing and on-line services. 

Business and scientific data from many fields, such as finance, astronomy, bioinformatics and physics, 
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are often measured in terabytes (10
12

 bytes). Big Data is characterised by its complexity, variety, speed 

of processing and volume (Laney, 2001). It is increasingly clear that exploiting the power of these data 

is essential for information mining. These data often contain too much noise (Liu, Motada, Setiono & 

Zhao, 2010) for accurate classification (Dash & Liu, 1997; Han & Kamber, 2006), prediction (Dash & 

Liu, 1997; Guyon & Elisseeff, 2003) or outlier detection (Hodge, 2011). Thus, only some of the features 

(dimensions) are related to the target concept (classification label or predicted value). Also, if there are 

too many data features then the data points become sparse. If data is too sparse then distance measures 

such as the popular Euclidean distance and the concept of nearest neighbours become less applicable 

(Ertöz, Steinbach & Kumar, 2003). Many machine learning algorithms are adversely affected by this 

noise and these superfluous features in terms of both their accuracy and their ability to generalize. 

Consequently, the data must be pre-processed by the classification or prediction algorithm itself or by a 

separate feature selection algorithm to prune these superfluous features (Kohavi & John, 1997; Witten & 

Frank, 2000).  

 

The benefits of feature selection include: reducing the data size when superfluous features are discarded, 

improving the classification/prediction accuracy of the underlying algorithm where the algorithm is 

adversely affected by noise, producing a more compact and easily understood data representation and 

reducing the execution time of the underlying algorithm due to the smaller data size. Reducing the 

execution time is extremely important for Big Data, which has a high computational resource demand 

on memory and CPU time.  

 

In this paper, we focus on feature selection in vast data sets for parallel and distributed classification 

systems. We aim to remove noise and reduce redundancy to improve classification accuracy. There is a 

wide variety of techniques proposed in the machine learning literature for feature selection including 

Correlation-based Feature Selection (Hall, 1998), Principal Component Analysis (PCA) (Jolliffe, 2002), 

Information Gain (Quinlan, 1986), Gain Ratio (Quinlan, 1992), Mutual Information Selection 

(Wettscherek, 1994), Chi-square Selection (Liu & Setiono, 1995), Probabilistic Las Vegas Selection 

(Liu & Setiono, 1996) and Support Vector Machine Feature Elimination (Guyon, Weston, Barnhill & 

Vapnik, 2002). Feature selectors produce feature scores. Some feature selectors also select the best set of 

features to use while others just rank the features with the scores. For these feature rankers, the best set 

of features must then be chosen by the user, for example, using greedy search (Witten & Frank, 2000). 

 

It is often not clear to the user which feature selector to use for their data and application. In their 

analysis of feature selection, Guyon and Elisseeff (2003) recommend evaluating a variety of feature 

selectors before deciding the best for their problem. Therefore, we propose that users exploit our 

framework to run a variety of feature selectors in parallel and then evaluate the feature sets chosen by 

each selector using their own specific criteria. Having multiple feature selectors available also provides 

the opportunity for ensemble feature selection where the results from a range of feature selectors are 

merged to generate the best set of features to use. Feature selection is a combinatorial problem so needs 

to be implemented as efficiently as possible particularly on big data sets. We have previously developed 

a k-NN classification (Weeks et al., 2003; Hodge & Austin, 2005) and prediction algorithm (Hodge, 

Krishnan, Austin & Polak, 2011) using an associative memory (binary) neural network called the 

Advanced Uncertain Reasoning Architecture (AURA) (Austin, 1995). This multi-faceted k-NN 

motivated a unified feature selection framework exploiting the speed and storage efficiency of the 

associative memory neural network. The framework lends itself to parallel and distributed processing 

across multiple nodes allowing vast data sets to be processed. This could be done by processing the data 

at the same geographical location using a single machine with multiple processing cores (Weeks, Hodge 

& Austin, 2002) or at the same geographical location using multiple compute nodes (Weeks, Hodge & 

Austin, 2002) or even distributed processing of the data at multiple geographical locations.  

 

Data mining tools such as Weka (Witten and Frank, 2000), Matlab, R and SPSS provide feature 

selection algorithms for data mining and analytics. However, these products are designed for small scale 

data analysis. Researchers have parallelised individual feature selection algorithms using 

MapReduce/Hadoop (Chu et al., 2006; Reggiani, 2013; Singh et al., 2009; Sun, 2014). Data mining 

libraries such as Mahout (https://mahout.apache.org) and MLib (https://spark.apache.org/mllib/) and 
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data mining frameworks such as Radoop (https://rapidminer.com/products/radoop/) include a large 

number of data mining algorithms including feature selectors. However, they do not explicitly tackle 

processing reuse with a view to multi-user and multi-task resource allocation. Zhang. Kumar and Re 

(2014) developed a database systems framework for optimised feature selection providing a range of 

algorithms. They observed that there are reuse opportunities that could yield orders of magnitude 

performance improvements on feature selection workloads as we will also demonstrate here using 

AURA in an Apache Hadoop (https://hadoop.apache.org/) framework.  

 

The main contributions of this paper are:  

 To extend the AURA framework to parallel and distributed processing of vast data sets in 

Apache Hadoop,  

 To describe five feature selectors in terms of the AURA framework. Two of the feature selectors 

have been implemented in AURA but not using Hadoop (Hodge, O’Keefe & Austin, 2006; 

Hodge, Jackson & Austin, 2012) and the other three  have not been implemented in AURA 

before, 

 To theoretically analyse the resulting framework to show how the five feature selectors have 

common requirements to enable reuse. 

 To theoretically analyse the resulting framework to show how we reduce the number of 

computations. The larger the data set then the more important this reduction becomes. 

 To demonstrate parallel and distributed processing in the framework allowing Big Data to be 

analysed.  

 

In our AURA framework, the feature selectors all use one common data representation. We only need to 

process any common elements once and can propagate the common elements to all feature selectors that 

require them. Thus, we can rapidly and efficiently determine the best feature selector and the best set of 

features to use for each data set under investigation. In section 2, we discuss AURA and related neural 

networks and how to store and retrieve data from AURA, section 3 demonstrates how to implement five 

feature selection algorithms in the AURA unified framework and section 4 describes parallel and 

distributed feature selection using AURA. We than analyse the unified framework in section 5 to 

identify common aspects of the five feature selectors and how they can be implemented in the unified 

framework in the most efficient way. Section 6 details the overall conclusions from our implementations 

and analyses. 

2 Binary Neural Networks 
AURA (Austin, 1995) is a hetero-associative memory neural network (Palm, 2013). An associative 

memory is addressable through its contents and a hetero-associative memory stores associations 

between input and output vectors where the vectors are different (Palm, 2013). AURA uses binary 

Correlation Matrix Memories (CMMs): binary hetero-associative matrices that store and retrieve 

patterns using matrix calculus. They are non-recursive and fully connected. Input vectors (stimuli) 

address the CMM rows and output vectors address the CMM columns. Binary neural networks have a 

number of advantages compared to standard neural networks including rapid one-pass training, high 

levels of data compression, computational simplicity, network transparency, a partial match capability 

and a scalable architecture that can be easily mapped onto high performance computing platforms 

including parallel and distributed platforms (Weeks, Hodge & Austin, 2002). AURA is implemented as 

a C++ software library. 

 

Previous parallel and distributed applications of AURA have included distributed text retrieval (Weeks, 

Hodge & Austin, 2002), distributed time-series signal searching (Fletcher, Jackson, Jessop, Liang, & 

Austin, 2006) and condition monitoring (Austin, Brewer, Jackson & Hodge, 2010). This new 

development will augment these existing techniques and is aimed at these same domains. It will couple 

feature selection, classification and prediction with the speed and storage efficiency of a binary neural 

network allowing parallel and distributed data mining. This makes AURA ideal to use as the basis of an 
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efficient distributed machine learning framework. A more formal definition of AURA, its components 

and methods now follows.  

2.1 AURA 
The AURA methods use binary input I and output O vectors to efficiently store records in a CMM M as 

in equation 1 using the binary rule (Palm, 2013).  
 

𝑴 =  ⋁ 𝑰𝒋𝑶𝒋
𝑻  𝑤ℎ𝑒𝑟𝑒 ∨ 𝑖𝑠 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑂𝑅       (1) 

 

Training (construction of a CMM) is a single epoch process with one training step for each input-output 

association (each Ij Oj
T
 in equation 1) which equates to one step for each record j in the data set. Thus, 

the trained CMM M represents {(I1×𝑶𝟏
𝑻), (I2×𝑶𝟐

𝑻), … (In×𝑶𝒏
𝑻)} superimposed using bitwise or. Ij Oj

T 
is 

an estimate of the weight matrix W(j) of the synaptic connections of the neural network as a linear 

associator with binary weights. W(j) forms a mapping representing the association described by the jth 

input/output pair of vectors. As a consequence of using unipolar elements {0, 1} throughout, the value at 

each matrix component wij means the existence of an association between elements i and j. The trained 

CMM M is then effectively an encoding (correlation) of the N weight matrices W for all N records in the 

data set. Individual weights within the weight matrix update using a generalisation of Hebbian learning 

(Hebb, 1949) where the state for each synapse (matrix element) is binary valued. Every synapse can 

update its weight independently using a local learning rule (Palm, 2013). Local learning is biologically 

plausible and computationally simple allowing parallel and rapid execution. The learning process is 

illustrated in Figure 1. 
 

 
Figure 1 Showing a CMM learning input vector In associated with output vector On on the left. 

The CMM on the right shows the CMM after five associations Ij Oj
T
. Each column of the CMM 

represents a record. Each row represents a feature value for qualitative features or a quantisation 

of feature values for quantitative features and each set of rows (shown by the horizontal lines) 

represents the set of values or set of quantisations for a particular feature. 

For feature selection, the data are stored in the CMM which forms an index of all features in all records. 

During training, the input vectors Ij represent the feature and class values and are associated with a 

unique output vector Oj representing a record. Figure 1 shows a trained CMM. In this paper, we set only 

one bit in the vector Oj indicating the location of the record in the data set, the first record has the first 

bit set, the second record has the second bit set etc. Using a single set bit makes the length of Oj 

potentially large. However, exploiting a compact list representation (Hodge & Austin, 2001) (more 

detail is provided in section 4.3.1) means we can compress the storage representation.  



Manuscript is intended for the Special Issue: Neural Network Learning in Big Data 
 

2.2 Data 
The AURA feature selector, classifier and predictor framework can handle qualitative features 

(symbolic and discrete numeric) and quantitative features (continuous numeric).  

 

The raw data sets need pre-processing to allow them to be used in the binary AURA framework. 

Qualitative features are enumerated and each separate token maps onto an integer (Token ↦Integer) 

which identifies the bit to set within the vector. For example, a SEX_TYPE feature would map as (F ↦ 

0) and (M ↦ 1). Any quantitative features are quantised (mapped to discrete bins) (Hodge & Austin, 

2012). Each individual bin maps onto an integer which identifies the bit to set in the input vector. Next, 

we describe the simple equi-width quantisation. We note that the Correlation-Based Feature Selector 

described in section 3.2 uses a different quantisation technique to determine the bin boundaries. 

However, once the boundaries are determined, the mapping to CMM rows is the same as described here. 

 

To quantise quantitative features, a range of input values for feature Ff  map onto each bin. Each bin 

maps to a unique integer as in equation 2 to index the correct location for the feature in Ij. In this paper, 

the range of feature values mapping to each bin is equal to subdivide the feature range into b equi-width 

bins across each feature.  

𝕽𝒇𝒊
→ 𝒃𝒊𝒏𝒔𝒇𝒌

↦ 𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒇𝒌
+ 𝒐𝒇𝒇𝒔𝒆𝒕(𝑭𝒇) 

where 𝑭𝒇 ∈ 𝑭, 𝒇𝒊𝑖𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑭𝒇 and 𝒄𝒂𝒓𝒅𝒊𝒏𝒂𝒍𝒊𝒕𝒚(𝑰𝒏𝒕𝒆𝒈𝒆𝒓𝒇𝒌
) ≡ 𝒄𝒂𝒓𝒅𝒊𝒏𝒂𝒍𝒊𝒕𝒚(𝒃𝒊𝒏𝒔𝒇𝒌

) 

 

(2) 

In equation 2, offset(Ff ) is a cumulative integer offset within the binary vector for each feature Ff, → is 

a many-to-one mapping and ↦ is a one-to-one mapping. The offset for the next feature Ff+1  is given by 

offset(Ff+1) = offset(Ff
 
) + nBins(Ff

 
 ) where nBins(Ff ) is the number of bins for feature Ff

 
. 

 

 For each record in the data set  

  For each feature  

   Calculate bin for feature value; 

   Set bit in vector as in equation 2; 
 

2.3 AURA Recall 
To recall the matches for a query (input) record, we firstly produce a recall input vector Rk by quantising 

the target values for each feature to identify the bins (CMM rows) to activate as in equation 3. During 

recall, the presentation of recall input vector Rk elicits the recall of output vector Ok as vector Rk 

contains all of the addressing information necessary to access and retrieve vector Ok. Recall is 

effectively the dot product of the recall input vector Rk and CMM M, as in equation 3 and Figure 2.  

 

𝑺𝑻 =  𝑹𝒌
𝑻 ∙ 𝑴 (3) 

If Rk appeared in the training set, we get an integer-valued vector S (the summed output 

vector), composed of the required output vector multiplied by a weight based on the dot 

product of the input vector with itself. If the recall input Rk is not from the original training 

set, then the system will recall the output Ok associated with the closest stored input to Rk, 

based on the dot product between the test and training inputs. 

 

Matching is a combinatorial problem but can be achieved in a single pass in AURA. AURA 

can also exploit the advantages of sparse vectors (Palm, 2013) during recall by only 

activating regions of interest. If the input vector Rk has 1,000 bits indexing 1,000 CMM rows 

then only the rows addressed by a set bit in the input vector need be examined (as shown in 

figures 2 and 3). For a 10 bit set vector then only 10 of the 1,000 rows are activated. The 

input pattern Rk would be said to have a saturation of (10/1000 = 0.01). The total amount of 

data that needs to be examined is reduced by a factor that is dependent on this saturation 

providing that the data is spread reasonably evenly between the rows and the CMM is 

implemented effectively. Using smart encoding schemes can bring the performance 
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improvement resulting from very low saturation input patterns to over 100-fold (Weeks, 

Hodge & Austin, 2002). 

 

The AURA technique thresholds the summed output S to produce a binary output vector T as 

given in equation 4.  

𝑻𝒋 =  {
1 if 𝑺𝒋 ≥ 𝜃

  0 otherwise
 

(4) 

 

For exact match, we use the Willshaw threshold (Willshaw, Buneman & Longuet-Higgins, 

1969) to set θ. This sets a bit in the thresholded output vector for every location in the 

summed output vector that has a value higher than or equal to θ. The value of θ varies 

according to the task. If there are ten features in the data and we want to find all stored 

records that match the ten feature values of the input vector then we set θ to 10. Thus, for full 

match θ = b
1
, where b

1 
is set to the number of set bits in the input vector. For partial 

matching, we use the L-Max threshold (Casasent & Telfer, 1992). L-Max thresholding 

essentially retrieves at least L top matches. Our AURA software library automatically sets θ 

to the highest integer value that will retrieve at least L matches. 

 

 
Figure 2 Showing a CMM recall. Applying the recall input vector Rk to the CMM M retrieves a 

summed integer vector S with the match score for each CMM column. S is then thresholded to 

retrieve the matches. The threshold here is either Willshaw with value 3 retrieving all columns 

that sum to 3 or more or L-Max with value 2 to retrieve the 2 highest scoring columns. 

Feature selection described in section 3 requires both exact matching using Willshaw thresholding and 

partial matching using L-Max thresholding.  

3 Feature Selection 
There are two fundamental approaches to feature selection (Kohavi & John, 1997; Witten & Frank, 

2000): (1) filters select the optimal set of features independently of the classifier/predictor algorithm 

while (2) wrappers select features which optimise classification/prediction using the algorithm. We 

examine the mapping of five filter approaches to the binary AURA architecture. Filter approaches are 

more flexible than wrapper approaches as they are not directly coupled to the algorithm and are thus 

applicable to a wide variety of classification and prediction algorithms. Our method exploits the high 

speed and efficiency of the AURA techniques as feature selection is a combinatorial problem.  
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We examine a mutual information approach (Mutual Information Feature Selection (MI) detailed in 

section 3.1 that analyses features on an individual basis, a correlation-based multivariate filter approach 

(Correlation-based Feature Subset Selection (CFS) detailed in section 3.2  that examines greedily 

selected subsets of features, a revised Information Gain approach Gain Ratio (GR) detailed in section 

3.3, a feature dependence approach Chi-Square Feature selection(CS) detailed in section 3.4 which is 

univariate, and a univariate feature relevance approach Odds Ratio (OR) detailed in section 3.5.  

 

Univariate filter approaches such as MI, CS or OR are quicker than multivariate filters as they do not 

need to evaluate all combinations of subsets of features. The advantage of a multivariate filter compared 

to a univariate filter lies in the fact that a univariate approach does not account for interactions between 

features. Multivariate techniques evaluate the worth of feature subsets by considering both the 

individual predictive ability of each feature and the degree of redundancy between the features in the set.  

 

All five feature selection algorithms have their relative strengths. We refer the reader to Forman (2003) 

and Varela et al. (2013) for accuracy evaluations of these feature selectors. These papers show that the 

best feature selector varies with data and application. Using the CFS attribute selector, Hall and Smith 

(1998) found significant improvement in classification accuracy of k-NN on five of the 12 data sets they 

evaluated but a significant degradation in accuracy on two data sets. Hence, different feature selectors 

are required for different data sets and applications. 

 

We note that the CFS as implemented by Hall (1998) uses an entropy-based quantisation whereas we 

have used equi-width quantisation for the other feature selectors (MI, GR, CS and OR). We plan to 

investigate unifying the quantisation as a next step. For the purpose of our analysis in section 5, we 

assume that all feature selectors are using identical quantisation. We assume that all records are to be 

used during feature selection. 

3.1 Mutual Information Feature Selection 
Wettscherek (1994) described a mutual information feature selection algorithm. The mutual information 

between two features is ``the reduction in uncertainty concerning the possible values of one feature that 

is obtained when the value of the other feature is determined' ' (Wettscherek, 1994).  MI is defined by 

equation 5: 

 

𝑴𝑰(𝑭𝒋, 𝑪) =  ∑ ∑ 𝒑(𝑪 = 𝒄 ⋀

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

𝑭𝒋 = 𝒇𝒊) ⋅ 𝒍𝒐𝒈𝟐 (
𝒑(𝑪 = 𝒄 ⋀ 𝑭𝒋 = 𝒇𝒊)

𝒑(𝑪 = 𝒄) ⋅ 𝒑(𝑭𝒋 = 𝒇𝒊)
)

𝒃(𝑭𝒋)

𝒊=𝟏

 

(5) 

 

To calculate p(𝑪 = 𝒄 ⋀ 𝑭𝒋 = 𝒇𝒊), we use AURA to calculate 
𝑛(𝐵𝑉𝑓𝑖∧𝐵𝑉𝑐)

𝑁
.  

 

AURA excites the row in the CMM corresponding to feature value fi of feature Fj and the row in the 

CMM corresponding to class value c as shown in Figure 3. By thresholding the output vector S at 

Willshaw threshold value = 2, we obtain a thresholded output vector with a bit set for every co-

occurrence. We can count these set bits to determine the co-occurrence count. Furthermore, 𝑝(𝐶 = 𝑐)is 

the count of the number of set bits n(BVc) in the binary vector (CMM row) for c and 𝑝(𝐹𝑗 = 𝑓𝑖) is the 

count of the number of set bits n(BVfi) in the binary vector (CMM row) for fi as used by GR. 

The MI calculated using AURA for qualitative features is given by equation 6 where N is the number of 

records in the data set, rows(Fj) is the number of CMM rows for feature Fj and nClass is the number of 

classes: 

𝑴𝑰(𝑭𝒋, 𝑪) =  ∑ ∑
𝒏(𝑩𝑽𝒇𝒊 ∧ 𝑩𝑽𝒄)

𝑵

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

⋅ 𝒍𝒐𝒈𝟐 (

𝒏(𝑩𝑽𝒇𝒊 ∧ 𝑩𝑽𝒄)
𝑵

𝒏(𝑩𝑽𝒇𝒊)
𝑵 ⋅

𝒏(𝑩𝑽𝒄)
𝑵

)

𝒓𝒐𝒘𝒔(𝑭𝒋)

𝒊=𝟏

 

(6) 

 

We can follow the same process for real/discrete ordered numeric features in AURA. In this case, the 

mutual information is given by equation 7: 
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𝑴𝑰(𝑭𝒋, 𝑪) =  ∑ ∑
𝒏(𝑩𝑽𝒃𝒊 ∧ 𝑩𝑽𝒄)

𝑵

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

⋅ 𝒍𝒐𝒈𝟐 (

𝒏(𝑩𝑽𝒃𝒊 ∧ 𝑩𝑽𝒄)
𝑵

𝒏(𝑩𝑽𝒃𝒊)
𝑵

⋅
𝒏(𝑩𝑽𝒄)

𝑵

)

𝒃𝒊𝒏𝒔(𝑭𝒋)

𝒊=𝟏

 

(7) 

 

where bins(Fj) is the number of bins (effectively the number of rows) in the CMM for feature Fj and 

BVbi is the CMM row for the bin mapped to by feature value fi,  

 

 
Figure 3 Diagram showing the feature value row and the class values row excited to determine co-

occurrences (𝑪 = 𝒄 ⋀ 𝑭𝒋 = 𝒇𝒊). 

 

The MI feature selector assumes independence of features and scores each feature separately so it is the 

user's prerogative to determine the number of features to select. The major drawback of the MI feature 

selector along with similar information theoretic approaches, for example Information Gain, is that they 

are biased toward features with the largest number of distinct values as this splits the training records 

into nearly pure classes. Thus, a feature with a distinct value for each record has a maximal information 

score. The CFS and GR feature selectors make adaptations of information theoretic approaches to 

prevent this biasing.  

3.2 Correlation-based Feature Subset Selection 
Hall (1998) proposed the Correlation-based Feature Subset Selection (CFS). It measures the strength of 

the correlation between pairs of features. CFS favours feature subsets that contain features that are 

highly correlated to the class but uncorrelated to each other to minimise feature redundancy. CFS is thus 

based on information theory measured using Information Gain. Hall and Smith (1997) used a modified 

Information Gain measure, Symmetrical Uncertainty, (SU) given in equation 8 to prevent bias towards 

features with many distinct values (section 3.1). SU estimates the correlation between features by 

normalising the value in the range [0, 1]. Two features are completely independent if SU=0 and 

completely dependent if SU=1.  

 

𝑺𝑼(𝑭𝒋, 𝑮𝒍) = 𝟐. 𝟎 ⋅ [
𝑬𝒏𝒕(𝑭𝒋) − 𝑬𝒏𝒕(𝑭𝒋 | 𝑮𝒍)

𝑬𝒏𝒕(𝑭𝒋) + 𝑬𝒏𝒕(𝑮𝒍)
] 

(8) 

 

where the entropy of a feature Fj for all feature values fi is given as equation 9: 

 

𝑬𝒏𝒕(𝑭𝒋) =  − ∑ 𝒑(𝒇𝒊)𝒍𝒐𝒈𝟐(𝒑(𝒇𝒊))
𝒏(𝑭𝒋)

𝒊=𝟏
 

(9) 
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and the entropy of feature Fj after observing values of feature Gl is given as equation 10: 

 

𝑬𝒏𝒕(𝑭𝒋 | 𝑮𝒍) =  − ∑ 𝒑(𝒈𝒌) ∑ 𝒑(𝒇𝒊 | 𝒈𝒌)𝒍𝒐𝒈𝟐(𝒑(𝒇𝒊 | 𝒈𝒌))
𝒏(𝑭𝒋)

𝒊=𝟏

𝒏(𝑮𝒍)

𝒌=𝟏
 

(10) 

 

Any quantitative features are discretised using Fayyad and Irani's entropy quantisation (Fayyad & Irani, 

1993). The bin boundaries are determined using Information Gain and these quantisation bins map the 

data into the AURA CMM as previously.  

 

CFS has many similarities to MI when calculating the values in equations 8, 9 and 10 and through using 

the same CMM (Figure 3) as noted below. 

 

In the AURA CFS, for each pair of features (Fj ,Gl) to be examined, the CMM is used to calculate 

Ent(Fj), Ent(Gl) and Ent(Fj | Gl) from equations 8,  9 and 10. There are three parts to the calculation. 

 

1. Ent(Fj) requires the count of data records for the particular value fi of feature Fj which is n(BVfi) in 

equation 6 for qualitative and class features and n(BVbi) in equation 7 for quantitative features. 

AURA excites the row in the CMM corresponding to feature value fi of feature Fj. This row is a 

binary vector (BV) and is represented by BVfi. A count of bits set on the row gives n(BVfi) from 

equation 6 and is achieved by thresholding the output vector Sk from equation 4 at Willshaw value 

1.  

2. Similarly, Ent(Gl) counts the number of records where feature Gl has value gk. 

3. Ent(Fj | Gl) requires the number of co-occurrences of a particular value fi of feature Fj with a 

particular value gk of feature Gl n(BVfi ∧ BVgk) for qualitative features and n(BVbi ∧ BVbk) for 

quantitative features and between a feature and the class n(BVfi ∧ BVc) and n(BVbi ∧ BVc) for 

qualitative and quantitative features respectively. If both the feature value row and the class values 

row are excited then the summed output vector will have a two in the column of every record with a 

co-occurrence of fi with cj as shown in Figure 3. By thresholding the summed output vector at a 

threshold of two, we can find all co-occurrences. We represent this number of bits set in the vector 

by n(BVfi ∧ BVc) which is a count of the set bits when BVc is logically anded with BVfi . 
 

CFS determines the feature subsets to evaluate using forward search. Forward search works by greedily 

adding features to a subset of selected features until some termination condition is met whereby adding 

new features to the subset does not increase the discriminatory power of the subset above a pre-specified 

threshold value. The major drawback of CFS is that it cannot handle strongly interacting features (Hall 

& Holmes, 2003). 

3.3 Gain Ratio Feature Selection 
Gain Ratio (GR) (Quinlan, 1992) is a new feature selector for the AURA framework. GR is a modified 

Information Gain technique and is used in the popular machine learning decision tree classifier C4.5 

(Quinlan, 1992). Information Gain is given in equation 11 for feature Fj and the class C. CFS (section 

3.2) modifies Information Gain to prevent biasing toward features with the most values. GR is an 

alternative adaptation which considers the number of splits (number of values) of each feature when 

calculating the score for each feature using normalisation.  

 

𝑮𝒂𝒊𝒏(𝑭𝒋, 𝑪) = 𝑬𝒏𝒕(𝑭𝒋) − 𝑬𝒏𝒕(𝑭𝒋 | 𝑪) (11) 

 

where Ent(Fj) is defined in equation 9 and Ent(Fj |C) is defined by equation 10. Then Gain Ratio is 

defined as equation 12: 

 

𝐺𝒂𝒊𝒏𝑹𝒂𝒕𝒊𝒐(𝑭𝒋, 𝑪) =  
𝑮𝒂𝒊𝒏(𝑭𝒋, 𝑪)

𝑰𝒏𝒕𝒓𝒊𝒏𝒔𝒊𝒄𝑽𝒂𝒍𝒖𝒆(𝑭𝒋)
 

(12) 
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where IntrinsicValue is given by equation 13: 

 

𝑰𝒏𝒕𝒓𝒊𝒏𝒔𝒊𝒄𝑽𝒂𝒍𝒖𝒆(𝑭𝒋) = ∑
𝑺𝒑

𝑵

𝑽

𝒑=𝟏
 𝒍𝒐𝒈𝟐 (

𝑺𝒑

𝑵
) 

(13) 

 

and V is the number of feature values (n(Fj)) for qualitative features and number of quantisation bins 

n(bi) for quantitative features and Sp is a subset of the records that have Fj=fi for qualitative features or 

map to the quantisation bin bin(fi) for quantitative features. 

 

To implement GR using AURA, we train the CMM as described in section 2.1 We can then calculate 

Ent(Fj) and Ent(Fj | C) as per the CFS feature selector described in section 3.2 to allow us to calculate 

Gain(Fj, C). To calculate IntrinsicValue(Fj) we need to calculate the number of records that have 

particular feature values. This is achieved by counting the number of set bits n(BVfi) in the binary vector 

(CMM row) for fi for qualitative features or n(BVbi) in the binary vector for the quantisation bin bi for 

quantitative features. We can store counts for the various feature values and classes as we proceed so 

there is no need to calculate any count more than once.  

 

The main disadvantage of GR is that it tends to favour features with low Intrinsic Value rather than high 

gain by overcompensating toward a feature just because its intrinsic information is very low. 

3.4 Chi-Square Algorithm 
We now demonstrate how to implement a second new feature selector in the AURA framework. The 

Chi-Square (CS) (Liu & Setiono, 1995) algorithm is a feature ranker like MI, OR and GR rather than a 

feature selector; it scores the features but it is the user's prerogative to select which features to use. CS 

assesses the independence between a feature (Fj) and a class (C) and is sensitive to feature interactions 

with the class. Features are independent if CS is close to zero. Yang and Pedersen (1997) and Forman 

(2003) conducted evaluations of filter feature selectors and found that CS is among the most effective 

methods of feature selection for classification.  

 

Chi-Square is defined as equation 14: 

 

𝝌𝟐(𝑭𝒋, 𝑪) =  ∑ ∑
𝑵 ∗ (𝒘𝒛 − 𝒚𝒙)𝟐

(𝒘 + 𝒚) ∗ (𝒙 + 𝒛) ∗ (𝒘 + 𝒙) ∗ (𝒚 + 𝒛)

𝒏𝑪𝒍𝒂𝒔𝒔

𝒄=𝟏

𝒃(𝑭𝒋)

𝒊=𝟏
 

(14) 

 

where b(Fj) is the number of bins (CMM rows) representing feature Fj, nClass is the number of classes, 

w is the number of times fi and c co-occur, x is the number of times fi occurs without c, y is the number 

of times c occurs without fi, z is the number of times neither c nor fi occur. Thus, CS is predicated on 

counting occurrences and co-occurrences and, hence, has many commonalities with MI, CFS and GR.  

 Figure 3 shows how to produce a binary output vector (BVfi ∧ BVc) for qualitative features or 

(BVbi ∧ BVc) for quantitative features listing the co-occurrences of a feature value and a class 

value. It is then simply a case of counting the number of set bits (1s) in the thresholded binary 

vector T in Figure 3  to count w.  

 To count x for qualitative features, we logically subtract (BVfi ∧ BVc) from the binary vector 

(BVfi) to produce a binary vector and count the set bits in the resulting vector. For quantitative 

features, we subtract (BVbi ∧ BVc) from (BVbi) and count the set bits in the resulting binary 

vector.  

 To count y for qualitative features, we can logically subtract (BVfi ∧ BVc) from (BVc) and 

count the set bits and likewise for quantitative features we can subtract (BVbi ∧ BVc) from BVc 

and count the set bits.  

 If we logically or (BVfi) with (BVc), we get a binary vector representing (Fj=fi) ∨(C=c) for 

qualitative features. For quantitative features, we can logically or (BVbi) with (BVc) to produce 
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(Fj=bin(fi)) ∨(C=c). If we then logically invert this new binary vector, we retrieve a binary 

vector representing z and it is simply a case of counting the set bits to get the count for z.  
 

As with MI and OR, CS is univariate and assesses features on an individual basis selecting the features 

with the highest scores, namely the features that interact most with the class.  

3.5 Odds Ratio 
The third new feature selector is Odds Ratio (OR) (see Forman, 2003). OR is another feature ranker. 

Standard OR is a two-class feature ranker although it can be extended to multiple classes. It is often used 

in text classification tasks as these are often two-class problems. It performs well particularly when used 

with Naïve Bayes Classifiers. OR reflects relevance as the likelihood (odds) of a feature occurring in the 

positive class normalized by that of the negative class. OR has many commonalities with MI, CFS and 

GR but particularly with CS where it requires the same four calculations w, x, y and z (defined above in 

section 3.4). Odds Ratio is defined by equation 15: 

 

𝑶𝑹(𝑭𝒋, 𝑪) =  ∑
𝒘𝒛

𝒚𝒙

𝒃(𝑭𝒋)

𝒊=𝟏
 

(15) 

where b(Fj) is the number of bins (CMM rows) representing feature Fj, w is the number of times fi and c 

co-occur, x is the number of times fi occurs without c, y is the number of times c occurs without fi, z is 

the number of times neither c nor fi occur. Thus, OR is predicated on counting occurrences and co-

occurrences. To avoid division by zero the denominator is set to 1 if yx evaluates to 0.  

4 Parallel and Distributed AURA 
Feature selection is a combinatorial problem so a fast, efficient and scalable platform will allow rapid 

analysis of large and high dimensional data sets. AURA has demonstrated superior training and recall 

speed compared to conventional indexing approaches (Hodge & Austin, 2001) such as hashing or 

inverted file lists which may be used for data indexing. AURA trains 20 times faster than an inverted file 

list and 16 times faster than a hashing algorithm. It is up to 24 times faster than the inverted file list for 

recall and up to 14 times faster than the hashing algorithm. AURA k-NN has demonstrated superior 

speed compared to conventional k-NN (Hodge & Austin, 2005) and does not suffer the limitations of 

other k-NN optimisations such as the KD-tree which only scales to low dimensionality data sets 

(McCallum, Nigam & Ungar, 2000). We showed in (Hodge, O’Keefe & Austin, 2006) that using AURA 

speeds up the MI feature selector by over 100 times compared to a standard implementation of MI. 

 

For very large data sets, the data may be processed in parallel on one compute node (such as a multi-

core CPU) or across a number of distributed compute nodes. Each compute node in a distributed system 

can itself perform parallel processing.  

4.1 Parallel AURA 
In Weeks, Hodge & Austin (2002), we demonstrated a parallel search implementation of AURA. AURA 

can be subdivided across multiple processor cores within a single machine or spread across multiple 

connected compute nodes. This parallel processing entails “striping” the CMM across several parallel 

subsections. The CMM is effectively subdivided vertically across the output vector as shown in Figure 

4. In the data, the number of features m is usually much less than the number of records N, m << N. 

Therefore, we subdivide the data along the number of records N (column stripes) as shown in the 

leftmost example in Figure 4. 

 

Splitting the data across multiple CMM stripes using columns means that the CMM can store data as 

separate rows within a single stripe. Each record is contained within a single stripe. Each separate CMM 

stripe outputs a thresholded vector from that CMM stripe.  

 

If the number of features is large then it is possible to subdivide the CMMs further. The CMM is divided 

vertically by the records (column stripes) as before and then the column stripes are subdivided by the 
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input features (row stripes). Subdivision by input features (row stripes) is shown in the rightmost 

diagram in figure 4. Dividing the CMM using the features (row stripes) makes assimilating the results 

more complex than assimilating the results for column stripes. Each row stripe produces a summed 

output vector containing column subtotals for those features within the stripe. The column subtotals 

need to be assimilated from all row stripes that hold data for that column. Thus, we sum these column 

subtotals to produce a column stripe vector C holding the overall sum for each column in that stripe. 

Row striping involves assimilating integer vectors of length c where c is the number of columns for the 

column subdivision (column stripe).  

 

 

Figure 4 If a CMM contains large data it can be subdivided (striped) across a number of CMM 

stripes. In the left hand figure, the CMM is striped vertically (by time) and in the right hand 

figure the CMM is striped horizontally (be feature subsets). On the left, each CMM stripe 

produces a thresholded output vector Tn containing the top k matches (and their respective scores) 

for that stripe. All {Tn} are aggregated to form a single output vector T which is thresholded to list 

the top matches overall. On the right, each stripe outputs a summed output vector Sn. All Sn are 

summed to produce an overall summed output vector which is thresholded to list the top matches 

overall. 

4.2 Distributed AURA 
There are two central challenges for distributed feature selection: firstly, maintaining a distributed data 

archive so that data does not have to be moved to a central repository and secondly, orchestrating the 

search process across the distributed data. Different data and applications will have different criteria that 

they wish to optimise. These could be optimising communication overhead, processing speed, memory 

usage or combinations of these criteria. Hence, there is unlikely to be a single best technique for 

distribution. 

 

To distribute AURA, we use the striping mechanisms detailed in the previous section. However, rather 

than spreading the stripes within the cores of a multicore processor, we distribute the stripes across 

computers within a distributed network. The stripes need to be distributed for maximum efficiency. This 

can be to maximise processing speed, to minimise memory usage, to minimise communication overhead 

or a combination of criteria. Distributing the stripes requires an efficient distribution mechanism to 

underpin the procedure. 

 

Orchestrated search with minimal data movement is provided by the open source software project: 

Apache Hadoop (Shvachko, Hairong, Radia & Chansler, 2010). Hadoop operates on the premise that 

“moving computation is cheaper than moving data” (Borthakur, 2008). Hadoop allows the distributed 

processing of large data sets across clusters of commodity servers. It provides load balancing, is highly 

scalable and has a very high degree of fault tolerance. It is able to run on commodity hardware due to its 

ability to detect and handle failures at the application layer. There are multiple copies of the stored data 

so, if one server or node is unavailable, its data can be automatically replicated from a known good 

copy. If a compute node fails then Hadoop automatically re-balances the work load on the remaining 

nodes. Hadoop has demonstrated high performance for a wide variety of tasks (Borthakur et al., 2011). 



Manuscript is intended for the Special Issue: Neural Network Learning in Big Data 
 

It was initially aimed at batch processing tasks so is ideally suited to the task of feature selection where 

the feature selector is trained with the training data and feature selection is run once on a large batch of 

test data. Hadoop is currently developing real-time processing capabilities. In this paper, we focus on 

batch processing and the implementation details of the five feature selectors using AURA with Hadoop.  

 

Hadoop is highly configurable and can be optimised to the user’s specific requirements, for example, 

optimising to minimise memory overhead, optimising for fastest processing or optimising to reduce 

communication overhead. Hence, we do not attempt to evaluate Hadoop here. Instead, we focus on 

describing how to map AURA CMMs to Hadoop to create a feature evaluation framework.  

 

There are two parts of Hadoop that we consider here: YARN which assigns work to the nodes in a 

cluster and the Hadoop Distributed File System (HDFS) which is a distributed file system spanning all 

the nodes in the Hadoop cluster with a single namespace.  

 

YARN (Kumar et al., 2013) supersedes MapReduce in Hadoop. YARN is able to run existing 

MapReduce applications. YARN decouples resource management and scheduling from the data 

processing. This means that data can continue to be streamed into the system simultaneously with 

MapReduce batch jobs. YARN has a central resource manager that reconciles Hadoop system resources 

according to constraints such as queue capacities or user-limits. Node manager agents monitor the 

processing operations of individual nodes in the cluster. The processing is controlled by an 

ApplicationMaster which negotiates resources from the central resource manager and works with the 

node manager agents to execute and monitor the tasks. The actual MapReduce procedure, divides 

(maps) the processing into separate chunks which are processed in parallel. The outputs of the 

processing tasks are combined (reduced) to generate a single result. The input and output data for 

MapReduce can be stored in HDFS on the same compute nodes used for processing the MapReduce 

jobs. This produces a very high aggregate bandwidth across the cluster. The user’s applications specify 

the input/output locations and supply map and reduce functions via implementations of appropriate 

interfaces and/or abstract-classes. The framework takes care of distributing the software/configuration, 

scheduling tasks, monitoring the tasks and re-executing any failed tasks. 

 

HDFS links together the file systems on many local nodes to make them into one big file system. HDFS 

assumes nodes will fail, so it achieves reliability by replicating data across multiple nodes. Processing 

data in situ on local nodes is efficient compared to moving the data over the network to a single 

processing node. This local processing architecture of Hadoop has resulted in very good performance 

(Rutman, 2011) on cheap computer clusters even with relatively slow network connections (such as 1 

Gig Ethernet) (Rutman, 2011). Hence, Hadoop is ideal to underpin our distributed processing 

architecture. 

4.3 Hadoop Feature Selection 
Feature selection is a two part procedure. A training phase described in section 2.1 trains the data into 

the CMMs. A test phase then applies test data to the trained CMMs and correlates the results to produce 

feature selections. Each compute node holds a CMM, CMM stripe or set of CMM stripes that stores all 

local data. During training, CMMs are not immutable as each association in equation 1 changes the 

underlying CMM so Hadoop MapReduce is not a suitable paradigm for CMM training. Hence, the 

CMMs are trained in a conventional fashion and uploaded to HDFS once trained. If the data stored in a 

node's CMM exceed the memory capacity of that node then the CMM is subdivided into stripes as 

described in section 4.1 and shown in figures 4 and 5. The set of all CMM stripes at a node stores all 

data for that node. Every CMM stripe across the distributed system has to be coordinated so that record 

identifiers (such as timestamps) are matched to allow the CMM sum and threshold. Sum and threshold  

is column-based and relies on columns representing the same datum. When the results from different 

CMMs are unified then the columns from the various CMMs need to be aligned. The system is very 

flexible; we only need to access relevant CMM stripes so we can access subsets of data. The approach is 

a combination of the striping described above in section 4.1 and the CMM distribution described in 

section 4.2 with Hadoop orchestrating the search. 
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While the CMMs are being trained it is expedient to generate a MapReduce input file of input vectors to 

be used to produce the feature selections. These files will be split into batches by the MapReduce 

software and the results will be correlated to produce the feature selection scores. There is one input file 

per CMM stripe and the input vectors in each file represent the set of input vectors for recall to produce 

the feature selections. 
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Figure 5 Figure showing distributed AURA recall in Hadoop. In the figure, there are three 

distributed compute nodes as shown by the shading with three CMM stripes per node (3 CPU 

cores per node and one stripe per core). Thus, the top three stripes are on one compute node 

spread across three cores. In the map phase, the required input vectors are applied to the CMM 

stripes and the summed output vector is recalled for each stripe. The summed output vector can 

be thresholded now or later following aggregation as described in section 4.3.1. During the reduce 

phase, these output vectors are aggregated at each compute node giving three aggregated vectors. 

Finally, the three vectors are combined. 

Each CMM stripe that receives a search request, executes the recall process described in section 2.3. The 

candidate matches are the set of stored patterns that are close to the query in the feature space. In 

Hadoop the processing is coordinated by MapReduce (Shvachko et al., 2010). Hadoop YARN schedules 

the MapReduce tasks independently of the problem being solved. There is one Map job for each input 

file. Therefore, we model feature selection as a series of MapReduce jobs with each job representing one 

CMM stripe and the tasks are batches of file iterations (batch processing subsets of records) from the 

test data. The tasks are processed in parallel on distributed nodes. Each CMM stripe is read into a job. 

The recall function for CMM stripes is written as a Map task. Each MapReduce job invokes multiple 

Map tasks, each task represents a batch of recalls for a subset of input records, the batches execute in 

parallel. The Hadoop Mapper keeps track of the output vector versus record ID pairs so we know which 

output vector is associated with which record. The Reduce tasks perform the integer output vector 

thresholding as described in section 2.3 and write the data back into the file associated with the CMM 

stripe. Multiple feature selectors can be run in parallel, each executing as a series of MapReduce jobs. 

The CMMs for feature selection are immutable so subsequent iterations do not depend on the results (or 

changes) of the CMMs.  
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This whole MapReduce process has to be coordinated. If the MapReduce process is running at a single 

location then it can be coordinated as a Java class that initiates the individual jobs and then coordinates 

the results from all jobs to produce the feature selection scores. If the processing is geographically 

distributed then it needs a more complete coordinator. This can be achieved using for example the UNIX 

curl command and a monitor process that determines when curl has collected new data. Alternatively, it 

can be achieved using a distributed stream processor such as Apache Flume (https://flume.apache.org/) 

or Storm (https://storm.incubator.apache.org/). Essentially, whichever tool is used this is a three part 

process: initiate the feature selection process at each of the distributed nodes; retrieve the results data 

from the distributed nodes; and, monitor when the results have been returned from all nodes and 

combine them into a single unified result.  

4.3.1 Stripe vectors 

For Big data, the CMMs are too big to store in a one computer’s memory. Hence, they need to be striped 

across multiple computers as in figure 4 and figure 5. Each CMM stripe returns a vector representing the 

matching results for the input vector with respect to that CMM stripe. Palm (2013) has extensively 

analysed representations in associative memories and found that sparse representations are optimal 

because the number of matrix operations is proportional to the number of set bits in the vectors. A sparse 

pattern will have fewest set bits and require fewest operations. For our feature selector, each CMM 

stripe can return its results as  

1. an integer vector Sk (un-thresholded),  

2. a thresholded vector Tk or  

3. a list of the set bits in the thresholded vector. 

 

Option 1 is the least efficient as, potentially, every column could have an integer score so the vector 

would be an integer vector of length N where N is the number of data records stored. This integer vector 

can be thresholded for option 2 which produces a binary vector. A binary vector requires less storage 

capacity than an integer vector (1 bit per element for the binary vector compared to 16 or 32 bits per 

element for the integer vector). For option 3, we would return a list of the set bits. For this we can 

exploit a compact list representation for representing binary vectors (Hodge & Austin, 2001). This 

compact list representation is similar to the pointer representation used in associative memories (Bentz, 

Hagstroem & Palm, 1997). It ensures that retrieval is proportional to the number of set bits in the 

thresholded output vector so is fast and scalable. The feature selection process produces a large set of 

output vectors from the CMM stripes; namely, all vectors necessary for all feature selectors. Option 3 

allows AURA to be used for distributed processing with data sets of millions of records while using a 

relatively small amount of memory and with a massively reduced communication overhead. For 

example, if there were 10,000,000 records in the data set then a vector would have 10,000,000 elements. 

If only three records match (records; 8, 10 and 11) then processing {8,10,11} as indices requires much 

less time, memory and communication bandwidth compared to processing 10,000,000 binary digits. 

Hence, wherever possible we use option 3.  

 

The results need to be amalgamated for each feature selector to produce the feature scores for that 

feature selector. The system maintains an index of what data are stored where and what each datum 

represents so the coordinating node can coordinate the matching, receive all matching data and 

determine the set of best matches across all searchable data. Each feature selector will have a separate 

amalgamate program running at the coordinating node. This program uses the required vectors and set 

bit counts returned from AURA to produce the feature score as described in sections 3 and 5. 

5 Analysis of AURA Feature Selection 
We demonstrate theoretically using a worked example that our framework vastly reduces the number of 

required computations compared to processing the feature selectors separately. The worked example 

provides an easy and simple illustration of the method on a small data size. We envisage using the 

feature selector on Big Data sets where Big Data refers to data sets that require at a minimum multiple 

CPUs but more likely multiple compute nodes to process in tractable time for the application. The larger 

the data set and the more time critical the data processing then the more important our computation 
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reduction will become. MI, CFS, CS, OR and GR can all use a single CMM representation for the data 

such as the CMM in Figure 6. This overall CMM is amenable to striping across the processing nodes to 

allow Hadoop processing in a similar fashion to Figure 4 and Figure 5. The framework is underpinned 

by Hadoop which has been thoroughly evaluated in the literature (Kumar et al., 2013). Hadoop is highly 

configurable large data set framework that can be optimised to the user’s specific requirements, for 

example, optimising to minimise memory overhead, optimising for fastest processing or optimising to 

reduce communication overhead. Hence, we do not attempt to evaluate Hadoop itself here but just focus 

on how we minimise the number of feature selection computations to minimise processing. Users will 

use our framework to select the best feature selector for their data and application using their own 

specific criteria. 

 

The feature selectors in section 3 have many commonalities when implemented in the unified AURA 

framework. We can demonstrate the commonalities by analysing 12 records from the Iris data set 

(Fisher, 1936). The Iris data are illustrated in Figure 6 (left) when trained into the CMM. The 12 records 

have been trained into a CMM using the four features and the class. Each feature is quantitative and has 

been subdivided into five quantisation bins of equal width. Figure 6 (right) shows the same data divided 

into four CMM stripes (CMMStripe1, CMMStripe2, CMMStripe3 and CMMStripe4). The horizontal 

(row-based) striping means that the features “sepal len” and “sepal width” are in the top stripes and 

“petal len”, “petal width” and the class are in the bottom two stripes. The vertical (column-based) 

striping means that the first 6 data records are stored in the left two stripes and the other 6 records in the 

right two stripes. If the data were time-series or sequential, the column-based striping would form two 

time frames with the oldest data in the left two stripes and the newest data in the right two stripes. The 

input vectors are stored in a file for each CMM or CMM stripe. These files can then be batch processed 

in the Hadoop framework described. Within the evaluation, we consider how the data and CMMs would 

be accommodated in our Hadoop framework. 

 

MI, CFS, CS, OR and GR all use BVfi (the binary vector where (Fj=fi)), BVbi (the binary vector 

representing the quantisation bin bin(fi)) and BVc (the binary vector representing all records that have 

class label c). These only need to be extracted once and used in each feature selector as appropriate. For 

example in Figure 6, if we want all records where 1.12 ≤ petal width < 1.58 then we activate row 17 of 

the CMM. We can then Willshaw threshold the resultant integer output vector S (000011110000) at 

level 1 and retrieve the binary thresholded vector T with a bit set for every matching record (bits 

4,5,6,7). For the Hadoop distributed version, only the relevant CMM stripes are queried in Figure 6 

(right). In this case, activating row 17 of CMMStripe3 and CMMStripe4 queries the relevant data. 

CMMStripe3 will output thresholded vector T3 with bits 5 and 6 set and CMMStripe4 will output T4 

with bits 7 and 8 set. T3 and T4 can be concatenated to form a single vector thresholded vector T (as in 

figure 4) with bits 4, 5, 6 and 7 set. For the Hadoop distributed version, each CMM stripe CMMStripeX 

outputs a list of the indices of the set bits in TX which are collected by the coordinator.  

 

CFS, GR and MI all require nBVfi a count of the number of data records where a particular feature has a 

particular value Fj=fi and BVc a count of the number of records where the class has a particular label 

C=c. To count the number of records where 1.12 ≤ petal width < 1.58, we retrieve the binary 

thresholded vector as above and count the number of set bits (bits 4, 5, 6 and 7 are set giving 4 matching 

records). For the Hadoop approach, we coordinate the retrieval as above, concatenate the lists to produce 

a single overall list of set bits and count the list length. T3 has bits 4 and 5 set and T4 has bits 6 and 7 set 

giving 4 matching records in total. 

 

CFS, CS, OR, GR and MI all use (BVfi ∧ BVc) and (BVbi ∧ BVv) for qualitative and quantitative 

features respectively. For example, we can find all records where 4.6 ≤ sepal len < 5.1 and the class is A 

by activating rows 0 and 20 of the CMM, thresholding S (1222000000) at Willshaw level 2 to give T  

with three bits set: column 1, 2 and 3 in Figure 6 (left). This takes more coordinating in the Hadoop 

framework as the data for the feature value may not be stored with the data for the class; they may be in 

different CMM stripes. In Figure 6 (right), activate row 0 in CMMStripe1 and CMMStripe2 and then 

activate row 20 in CMMStripe3 and CMMStripe4. The coordinating program needs to correlate the 

sections of the vector for the feature value and correlate the sections of the vector for the class to form a 
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single vector. CMMStripe1 needs to be added (summed) with the output integer vector of CMMStripe3 

to give S1+3 and CMMStripe2 needs to be added (summed) with the output integer vector of 

CMMStripe4 to give S2+4. The summed vectors can then be thresholded at 2 to give T1+3 with bits 1, 2 

and 3 set (three matching records) and T2+4 with no bits set (no matches). The two thresholded output 

vectors are concatenated to produce T with bits 1, 2 and 3 set. If the thresholded vectors are stored as 

lists of indices (see section 4.3.1) then this is simply a task of finding the common indices between the 

two vectors. 

 

 
Figure 6 The 12 records from the iris data set, quantised and trained into a single AURA CMM 

(left) and subdivided across 4 stripes of the CMM (right). The letters in rows 20-22 indicate the 

class of the record: A=Iris-setosa, B=Iris-versicolor, C=Iris-virginica. 

 

MI, CFS, CS, OR and GR all also need a count of the conjunction, that is n(BVfi ∧ BVc) and n(BVbi ∧
 BVc) for qualitative and quantitative features respectively. Hence, we retrieve the binary thresholded 

vector T as above and count the set bits. 

 

Rather than calculating these elements multiple times, we can take advantage of the commonalities by 

calculating each common value, binary vector or count only once and propagating the result to each 

feature selector that requires it. Following these common calculations, all necessary calculations will 

have been made for MI and GR. CFS just requires the pairwise feature versus feature analyses (BVbi ∧ 

BVbk). These are performed in the same way as the feature versus class analyses above. CS and OR 

require the manipulation of some of the binary vectors to produce the logical or vectors. This requires 

the coordination of the vectors. To find (BVbi) ∨ (BVc), we combine the list of set bits for (BVbi) with 

the list of set bits for (BVc) and count the resulting list length. By calculating the common elements first, 

the remainder of the calculations can be performed for each feature selector using either this CMM and 

processing the algorithms in series or by generating multiple copies of the CMM and processing them in 

parallel if sufficient processing capacity is available. 
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Once all of the binary vectors have been retrieved by the distributed Hadoop system, they need to be 

processed to calculate the feature scores as per section 3 using the various feature selectors. A 

coordinator program organises this in parallel. There is one feature score calculation process per feature 

selector (currently five feature selectors are described here).  

 

For the Iris data set, there are 20 feature row activations 20 * BVbi and three class activations 3 * BVc. 

To calculate (BVbi ∧ BVc) requires 20 x 3 = 60 calculations. Hence, there are 83 common calculations 

(20+3+60) across all five feature selectors. CFS then needs to calculate (BVbi ∧ BVbk) which would 

require 19! calculations if every feature value was compared to every other. However, CFS uses greedy 

forward search so that the number of comparisons is minimised (Hall, 1998) to a worst case of (20
2
-

20)/2=190. We have already extracted all 20 * BVbi binary vectors so CFS needs 190 logical ands but 

no CMM accesses. We have saved a minimum of 20 CMM accesses for BVbi and a maximum of 190 

CMM accesses for worst case forward search. Manipulating the binary vectors can be performed at the 

coordinating node and in parallel as a Hadoop batch process. CS requires the logical or vectors (BVbi ∨ 

BVc). Again, we already have all 20 * BVbi binary vectors and all 3 * BVc binary vectors so there are 

20 x 3=60 logical ors to perform. Thus, we have saved a minimum of 20 * BVbi + 3 * BVc = 23 CMM 

accesses and potentially 60 CMM accesses if all 60 or operations were performed in the CMM. Thus MI 

requires 83 calculations, GR also requires 83, CFS requires 83 plus 190 and CS requires 83 plus 60. 

Without our reductions there would be 83+83+83+190+83+60 calculations. We have reduced this to 

83+190+60. Additionally, 190+60 of these can use vectors already extracted so there is no need to 

access the CMM. We have saved   3 * 83=249 recalls from the CMM by finding common aspects, have 

removed a minimum of 20+23 further CMM recalls and have reduced the other calculations to logical 

operations on stored binary vectors. The minimum saving on CMM recalls is given by equation 16. 

 

𝑆𝑎𝑣𝑖𝑛𝑔 =  (3 × (𝑛(𝐵𝑉𝑏𝑖) + 𝑛(𝐵𝑉𝑐) + (𝑛(𝐵𝑉𝑏𝑖)  × 𝑛(𝐵𝑉𝑐)))) + ((2 × 𝑛(𝐵𝑉𝑏𝑖)) + 𝑛(𝐵𝑉𝑐))   

(16) 

6 Conclusion 
Massive and complex data sources pose challenges for data mining but they also hold many 

opportunities. New information can be uncovered, vast timelines of data are available for analysis and 

the data models learned will be increasingly rich as the training data expands. How the data is 

represented needs to be carefully considered including careful preparation such as cleaning and selecting 

feature subsets. In this paper we have introduced a distributed processing framework for feature 

selection using the AURA neural network and Apache Hadoop. There are currently five feature selectors 

available which may be used independently or coupled with the AURA k-NN for classification or 

prediction.  

 

All five feature selectors can use a single trained CMM. We have identified common aspects of the five 

feature selectors when they are implemented in the AURA framework and indicated how these common 

aspects may be processed as a common block. All remaining aspects of the feature selectors can then be 

implemented in parallel using duplicate copies of the trained CMM as compute resources allow. CMMs 

lend themselves to distributed processing as they can be striped (split) using both row-based and 

column-based striping. The CMM created for feature selection can be used directly for the AURA k-NN 

for classification or prediction and any unwanted features (those not selected by the feature selection) 

can simply be ignored (masked off). Alternatively, the CMM can be retrained with only the required 

data if processing speed and memory usage at recall time are the primary concern. 

 

The AURA neural architecture has demonstrated superior training and recall speed compared to 

conventional indexing approaches such as hashing or inverted file lists (Hodge & Austin, 2001) and an 

AURA-based implementation of the MI feature selector was over 100 times faster than a standard 

implementation (Hodge, O’Keefe & Austin, 2006). This is further augmented by using the scalability of 

Hadoop. This combined platform allows rapid processing of feature selectors on large and high 
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dimensional data sets that cannot be processed on standard computers. We envisage using the method on 

data sets that require at a minimum multiple CPUs but more likely multiple compute nodes to process. 

The method is also best suited to data mining and analytics that processes a Big Data file in a longer 

term processing run such as overnight rather than on-line transaction processing which requires near 

real-time updating. The user can then evaluate the feature sets chosen by the feature selectors against 

their own data to determine the best feature selector and the best set of features. Additionally, each 

feature selector (MI, CFS, GR, CS and OR) generates scores for the features which can be used to 

weight the features during machine learning. 

 

The technique is flexible and easily extended to other feature selection algorithms. By implementing a 

range of feature selectors in a single framework, we can also investigate ensemble feature selection 

where the results from a range of feature selectors are merged to generate a consensus overview of the 

best set of features to use. 

 

We will investigate whether we can use Apache Spark, the in-memory data analytics and cluster 

computing framework (https://spark.apache.org/) to underpin the AURA feature selection framework. 

Apache Spark is closely coupled with Hadoop and allows YARN and MapReduce jobs to be run. Spark 

enables in-memory computing and is reputed to be up to 100 times faster than MapReduce (see 

https://spark.apache.org/). CMMs are optimised for in-memory processing so fit well with the Spark 

paradigm. A related development, Optimized Row Columnar (ORC) file format is currently being 

adopted by Spark. ORC is a file storage format that is tightly integrated with HDFS and provides 

optimizations for both read performance and data compression. An ORC file divides the data into 

groups of row data called stripes. This fits with the stripes used in AURA CMMs and would allow a 

direct mapping from ORC data file stripes to CMM stripes for optimised performance.  

 

We plan to use the feature selection framework that we have developed in this paper in conjunction 

with the AURA k-NN for traffic analysis (Hodge, Jackson, & Austin, 2012; Hodge, Krishnan, Austin 

& Polak, 2010; Hodge, Krishnan, Austin & Polak, 2011), condition monitoring (Austin, Brewer, 

Jackson & Hodge, 2010) and railway infrastructure monitoring in the NEWTON Project (Hodge, 

O’Keefe, Weeks & Moulds, 2015). 
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