
A Hardware-Accelerated Novel IR System

Michael Weeks, Victoria J.Hodge and Jim Austin
Advanced Computer Architecture Group,

Computer Science Department,
University of York,

Heslington, York, UK
(mweeks,vicky,austin)@cs.york.ac.uk

Abstract

AURA (Advanced Uncertain Reasoning Architecture) is
a generic family of techniques and implementations in-
tended for high-speed approximate search and match op-
erations on large unstructured datasets. This paper contin-
ues the AURA II (Advanced Uncertain Reasoning Architec-
ture) project’s research into distributed binary Correlation
Matrix Memory (CMM) based upon the PRESENCE (PaR-
allEl Structured Neural Computing Engine) hardware ar-
chitecture [14]. Previous work has described how CMMs
can be seamlessly implemented onto multiple hardware
PRESENCE cards to accelerate core CMM operations. To
demonstrate the system, this paper describes how a novel
CMM-based information retrieval (IR) system, called Min-
erTaur, was implemented using multiple PRESENCE cards
distributed across a cluster.

1 Introduction

Over the years the amount and range of stored text has
expanded rapidly, overwhelming both users and tools de-
signed to index and search the text. It is impossible to index
this information dynamically at query time due to the sheer
volume so an index must be pre-compiled and stored in a
compact and fast data structure. Much of the text is unstruc-
tured so the data structure to index such a repository must
be constructed solely from the unstructured text, storing as-
sociations between words and the documents that contain
them. A search tool is also required to link to the index and
enable the user to pinpoint their required information. The
user’s query and the unstructured text repository may con-
tain spelling errors so a spelling mechanism is an essential
component of the search tool.

In this paper we describe and empirically evaluate an
information retrieval system [3], named MinerTaur imple-
mented on a parallel hardware platform. MinerTaur com-

prises three modules, a spell checking pre-processor to
identify errors in the user query, a synonym hierarchy to
allow paraphrased documents to be matched and a word-
document indexing module to identify documents match-
ing particular query words. All modules rely on a fast ef-
ficient data structure to under-pin the system. The dedi-
cated hardware provides a fast and efficient indexing data
structure. We implement MinerTaur using binary Correla-
tion Memory Matrices (CMMs) on PCI-based PRESENCE
cards in a Beowulf PC cluster named Cortex-1.1 This pa-
per provides comparisons between a software implementa-
tion of the MinerTaur CMM data structures and the parallel
hardware implementation to investigate the comparative re-
trieval speeds.

The paper first introduces the AURA architecture, in-
cluding the AURA library, the PRESENCE PCI-card and
the new hardware-based additions to the AURA library.
This is followed by a description of the techniques used
to map a CMM over a distributed system. The Miner-
Taur system follows and the seamless method by which
MinerTaur is implemented onto the hardware. We de-
tail the empirical comparisons between the software and
multiple-PRESENCE card CMM implementations of Min-
erTaur. The paper closes with conclusions from the work,
and future work.

2 AURA

AURA (Advanced Uncertain Reasoning Architecture)
is a generic family of techniques and implementations in-
tended for high-speed approximate search and match op-
erations on large unstructured datasets [10]. AURA tech-
nology is fast, economical, and offers unique advantages
for finding near-matches not available with other methods.
AURA is based on a high-performance binary neural net-

1Cortex-1 consists of seven 500MHz PC nodes connected by 100Mbit
Ethernet, six nodes of which contain 28 PCI-PRESENCE cards.

work called Correlation Matrix Memory (CMM). Typically,
several CMM elements are used in combination to solve soft
or fuzzy pattern-matching problems.

AURA takes large volumes of data and constructs a spe-
cial type of compressed index. AURA finds exact and near-
matches between indexed records and a given query, where
the query itself may have omissions and errors. The degree
of nearness required during matching can be varied through
thresholding techniques.

In addition to the MinerTaur IR system, there are an in-
creasing range of applications for AURA. These include a
postal address matcher, high-speed rule-matching systems
[11], high-speed classifiers (e.g. novel k-NN implementa-
tions) [15], structure-matching (e.g. 3D molecular struc-
tures) [13], and trademark-database searching [9].

2.1 Correlation Matrix Memories

CMMs are neural networks for the storage and retrieval
of vector patterns. Each column of the matrix is seen as a
neuron, and each row represents an input and synapses to
each neuron. The PRESENCE hardware architecture con-
sists basically of a binary correlation matrix neural network
implemented in memory. In common with the CMM con-
cept, the PRESENCE card has two main modes of opera-
tion; teach and recall. In teach mode, the input and output
binary pattern vectors are supplied to the card over the PCI
bus. Recall is achieved by issuing only the input binary
vector, and on completion, the resulting summed column
data of the CMM can be read unprocessed from the card for
post-processing, or hardware thresholding can be applied to
the data to sort the best matches. Two types of hardware
thresholding can be applied (Willshaw or Lmax) dependent
upon the application. Willshaw [16] thresholding compares
the summed columns with a thresholded level, whilst Lmax
[17] retrieves the topL matches from all of the summed
columns. A detailed operation of CMM neural networks
can be found at [18].

CMM techniques lend themselves for use in such ap-
plications as inverted indexes, whereby objects are stored
in the CMM categorised by certain attributes. A keyword
search of documents, for instance, where the output pattern
associates one or more bits with a list of documents, and the
input pattern describes keywords in the documents. Figure
1 illustrates how documents and keywords are taught into a
CMM. A recall operation applies selected keywords as the
input pattern, and the column counts of the output pattern
contain matching documents.

2.2 AURA Library

Building high performance pattern matching architec-
tures is not sufficient to exploit the architecture fully and

d
o
c
u
m
e
n
t

1

d
o
c
u
m
e
n
t

2

d
o
c
u
m
e
n
t

3

d
o
c
u
m
e
n
t

4

d
o
c
u
m
e
n
t

5

" " " " " " "
d
o
c
u
m
e
n
t

n

0 10 0 0 0 0 0 0 0 0 0 0

1

0

1

0

1

0

0

bat
cow
dog
elephant

goldfish

aardvark

fox

output pattern for
 document 5

Input Pattern
keywords for

document 5 are
bat, elephant
& goldfish

Figure 1. An example of an inverted index
teach

easily, a powerful software library is also required. The
object-oriented AURA library, written in C++, allows for
the creation and manipulation of CMMs, in addition to pre-
and post-processing algorithms. The library has been writ-
ten for several machine-OS-compiler combinations, though
we are initially concerned with Linux and the GNU gcc
compiler.

AURA CMM objects can be instantiated so that they are
mapped onto the PRESENCE hardware, or are simulated in
software. CMM classes were initially designed as software
simulations to investigate the CMM concept, to experiment
with new features, and to enable application development
whilst the hardware progressed.

This project has added two new CMM classes to the
AURA library in the form of the NodeCMM and Dis-
tributedCMM implementations (see subsections 2.4 and
2.5). The NodeCMM object stripes a CMM across mul-
tiple PRESENCE cards in a node. The DistributedCMM
object stripes a CMM across multiple nodes of a cluster
via a client-server mechanism. The DistributedCMM can
make use of either hardware-based NodeCMMs or software
CMMs.

2.3 PRESENCE Architecture

This section gives a brief overview of the operation of the
PRESENCE architecture. PRESENCE is the current fam-
ily of hardware designs that accelerate the core CMM com-
putations needed in AURA applications. A more detailed
discussion of the PRESENCE architecture can be found in
[12]. The PRESENCE card utilises the PCI-bus interface,
to allow it to be used on standard desktop computer sys-
tems, and to give the CPU fast access to the card. The card
is a PCI-slave device, and contains the pipelinedSumming
and Thresholding (SAT) processor that accelerates CMM

operation. The card has 128 MByte of low-cost DRAM for
CMM weights memory, configured as 8Mwords of 128-bit
width.

The recall performance of a Willshaw-thresholded single
PRESENCE card is given in equation 1, where� is the clock
period of the binary neural SAT processor,S is the CMM
output (separator) vector width in bits andI is the number
of index or keyword terms that the recall is trying to match
against.TWillshaw = ���� S128 ���� � � � (52 + 2 � I) + 23 � � (1)

The PRESENCE cards clock period,� , is currently
fixed at 116MHz , therefore the performance of a Willshaw-
thresholded recall operation is proportional to the variable
termsI andS. Using a single PRESENCE board, the only
option for reducing these variables is vector compression.
However, vector compression increases the number of false
matches leading to a need for computationally-slow post-
process checking.

With multiple PRESENCE boards,I andS can be re-
duced by striping their respective vectors across the cards,
and has the added benefit of scalable weights memory.
However, whilst it is possible to stripe the index vector over
multiple cards, a recall operation will require the retrieval
of raw column data from the cards before performing col-
umn summation and thresholding in software. This will be
restrictively slow as the parallelism and functionality ofthe
PRESENCE card is bypassed.

Output vector striping, however, is feasible and fully
utilises the characteristics of the PRESENCE architecture
(see figure 2). Willshaw-thresholding scales naturally onto
multiple cards, though not with Lmax-thresholding. Lmax-
thresholding requires software thresholding on raw col-
umn data, or alternatively it can be achieved using repeat
Willshaw-thresholding with a decrementing level. Fortu-
nately, the use of Lmax-thresholding in applications is un-
common.

The following sections describes how a scalable multi-
-PRESENCE card CMM can be implemented in a dis-
tributed memory cluster such as Cortex-1. We identify two
levels of PRESENCE scalability, board-level striping within
a node, and node-level striping within the cluster.

2.4 PRESENCE Board-level CMM Striping

On a single node of the Cortex-1 cluster we can install
and operate up to five PRESENCE cards in parallel over the
PCI-bus. This gives a combined CMM memory space of
640MByte. Whilst this technique greatly increases the size
of the CMM that can be implemented, it presents challenges
when allocating, teaching and recalling.

o
u

tp
u

t b
u

ffe
r

striped
output
vectors

Output
vector

Presence
card CMMs

in
p

u
t b

u
ffe

r

Input
vector input vector

o
u

tp
u

t b
u

ffe
r

striped
output
vectors

Output
vector

Presence
card CMMs

in
p

u
t b

u
ffe

r

Input
vector input vector

Striped learn operation

Striped recall operation

Figure 2. Data-flow for separator striped learn
and recall operations

The NodeCMM class allows the transparent creation and
manipulation of CMM objects within a single PC node. The
CMM will be allocated on one or more PRESENCE cards,
such that the user does not know, or need to know the loca-
tion(s) of the data across the cards. It is almost identical in
use to the software CMMs provided in the AURA library,
though some differences exist which are explained below.

Striping a CMM across multiple cards decreases the re-
call time considerably. Therefore, for CMMs with a sepa-
rator size greater than 128-bits, multiple PRESENCE cards
are used.

In theory, the five PRESENCE cards operate in paral-
lel, so there should be only a small penalty over the single
card operation. In practice however, the PRESENCE driver,
which is a sequential process, must initiate the five boards,
check on their progress, then retrieve the data upon com-
pletion. Tests show that whilst Willshaw-thresholded recall
times are substantially lower than the five cards operating
individually, the overhead on the multiple recall is higher
than expected. Analysis proved that this overhead is in the

section of driver code that retrieves the data from the card,
via the PCI bus.

NodeCMM recall performance

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of index bits set

100

1000

10000

Number of
separator bits set

0
10
20
30
40
50
60
70
80

R
ec

al
l t

im
e

in
 m

s

0
10
20
30
40
50
60
70

0
10
20
30
40
50
60

Figure 3. 32,768 x 32,768 NodeCMM Willshaw-
thresholded recall performance

Software CMM recall Performance

200 400 600 800 1000 1200 1400 1600 1800 2000Number of index bits set 100

1000

10000

Number of separator bits set

0
1000
2000
3000
4000
5000
6000
7000
8000

R
ec

al
l t

im
e

in
 m

s

0
1000
2000
3000
4000
5000
6000
7000

Figure 4. 32,768 x 32,768 EfficientCMM
Willshaw-thresholded recall performance

An application was written to compare the performance
of the NodeCMM and EfficientCMM classes. The Effi-
cientCMM is a type of software simulated CMM that stores
bits in the CMM matrix in a compacted format. Each CMM
type was initialised with both input and output vector widths
of 32768 bits. Recall operations were then performed with
varying input and output vector saturation levels that were
randomly set. Figures 3 and 4 compare the Willshaw-
thresholded recall performance of the two CMMs.

2.5 Node-level Parallelism

The limitations of the simulated CMM are that its stor-
age capacity scales with system memory, and large highly-
saturated CMMs can be slow. Using PRESENCE cards,
storage capacity is limited to 128MByte or 640MByte with
a maximum of 5 cards per machine. To scale the CMM’s

storage capacity further, it must be distributed across mul-
tiple machines. The CMM is distributed across multiple
nodes in the Cortex-1 cluster via separator striping, similar
to that described in section 2.4. A client-server framework
was created that allowed the creation of remote CMMs
across a network. The remote CMMs can be either soft-
ware or the PRESENCE-based NodeCMM. For communi-
cation tasks we used the ACE library (Adaptive Commu-
nication Environment)2, which provides a library of com-
mon communication software tasks across a range of oper-
ating system platforms. A wrapper class, calledDistribut-
edCMMencapsulates the underlying cluster infrastructure
and PRESENCE cards so they are hidden from the applica-
tion programmer. In this way, converting the existing appli-
cations to distributed PRESENCE cards would simply be a
matter of re-declaring the CMM objects and re-compiling.

3 MinerTaur IR System

Many IR systems employ inefficient data structures.
Glimpse [8] uses a two-level index that is only suitable for
small system storage. Bayesian networks and node-based
neural networks suffer the explosion of nodes as the number
of nodes increases exponentially with the number of doc-
uments stored. Other systems minimise storage by incor-
porating various data compression techniques. Latent Se-
mantic Indexing [6] reduces the size of the word-document
matrix. However, low-level information may be factored
out and the decomposition process is exceedingly time con-
suming and computationally expensive. In the system eval-
uated in this paper, we use orthogonal vectors to represent
words and documents. Orthogonal vectors ensure accurate
retrieval and thus maximise system speed and throughput.
Orthogonal vectors produce no false matches unlike other
vector compression process such as vectors with multiple
bits set [7].

Our overall IR system [3] comprises three modules: a
spell checker, a hierarchical thesaurus and finally a word-
document association index. We briefly describe each mod-
ule below with citations to more detailed descriptions.

The first module is afront-end spell-checking system
[4] to isolate any mis-spelt query words by validating each
query word against the lexicon. The module uses 2 CMMs:
one for Hamming Distance and n-gram spelling and one for
phonetic matching. If a word is not validated we assume a
spelling error and our spell-checking module provides a list
of the best candidate matches for the user to select from.
We integrate the outputs of the 2 CMMs and score the can-
didate matches. All query words are correctly spelt in our
evaluation, so only a validation step is necessary.

The second module is ahierarchical thesauruswe gen-
erate automatically from the corpus. We employ a statisti-

2available from http://www.cs.wustl.edu/�schmidt/ACE.html

cal gathering and inference methodology to automatically
evolve a hierarchical thesaurus from word co-occurrence
statistics in the text corpus. Words are grouped in to clusters
by their contextual similarities using the average context
vectors and our TreeGCS [5] growing hierarchical cluster-
ing algorithm, built upon Fritzke’s Growing Cell Structures
[1]. We can then exploit the distances within the synonym
hierarchy to ascribe scores to query words and their syn-
onyms. The scores are added to the matching documents
output from the word-document matrix.

The third module is abinary word-document CMM for
fast training and rapid partial match retrieval [2]. Each row
of the matrix effectively indexes a particular word and each
column effectively indexes a specific document and a bit
is set at positionij if wordi occurs indo
umentj . To re-
trieve all documents matching a query word, we activate the
matrix rows indexed by the words and retrieve all columns
where a bit is set. We multiply this output vector by the
word score to score the matching documents.

Figure 5. Snapshot of MinerTaur’s Java user-
interface

MinerTaur uses a Java front-end (figure 5) to interface
with a back-end C++ library that implements the main com-
ponents of the IR system. The Java code accepts key-
word inputs and passes them to the C++ library. We
pass each query word through each of the three modules
in turn, retrieving a set of matching documents from the
word-document matrix. We produce a separate vector for
each query word with an attribute for each document rep-
resenting the document’s score with respect to the specific
query word. We can then rank the documents by summing
all query word vectors to generate a cumulative document
score vector. Assuming that the keywords chosen are spelt
correctly and are present in the document list, the library
code returns the list of documents that contain the keywords
and their degree of confidence.

The initial document corpus was 15.5 MBytes in size and
contained 18249 Reuters document abstracts [19]. 47,985

CMM Rows Columns Memory size
Spelling 2000 48767 1.393 MByte
Phonetic 68 48767 389 kByte
Word-Doc 48767 18250 7.989 MByte

Table 1. MinerTaur CMM configuration

keywords were extracted from the file to search the doc-
uments. The three MinerTaur CMMs: the spelling, pho-
netic, and word-to-document CMMs are initially taught
with input-output associations from data files. The size of
the individual CMMs are given in table 1.

To test the performance of PRESENCE in real life ap-
plications it was decided to implement the MinerTaur ap-
plication’s Word-Doc CMM using the NodeCMM and the
DistributedCMM objects, using various numbers of PRES-
ENCE cards. A batch query was added to the MinerTaur
back-end code in order to gather system performance data.
The batch query consists of 1200 sets of randomly gener-
ated query word combinations. The combinations are or-
ganised as 100 examples each of 1 word to 12 word queries.
The batch query was performed with bothword andword
and synonymsearches.

Converting the code from the software CMM class to the
two PRESENCE-based CMM class should be trivial. The-
oretically, a simple re-declaration of the Word-Doc CMM
object should suffice. In practice however, when recalling
data, the software must be optimised to maximise the per-
formance gains obtainable from PRESENCE. For instance,
the application initially made use of raw column-count re-
calls that were then thresholded using software algorithms.
In hardware, Willshaw-thresholded recalls are an order of
magnitude faster than a raw column-count recall, and re-
quires no threshold post-processing by the system CPU.
Therefore, for raw CMM recalls that are then Willshaw-
thresholded in software, the two operations can be replaced
by a single hardware Willshaw-thresholded recall. This re-
quired some sections of the code to be rewritten and certain
functions to be in-lined due to complexities in the flow of
data.

Future improvements to the hardware performance can
only be beneficial if current application performance is
heavily degraded by CMM recall operations. Data from
the batch query was analysed for the amount of time spent
performing CMM recalls during a MinerTaur query was
recorded in table 2. Data is given forword andword and
synonym searches implemented using both locally imple-
mented hardware and software CMMs. From this data it can
be seen that when MinerTaur is implemented using a 5-card
NodeCMM, 67-76% of program execution time is spent in
recall operations. This provides justification for improve-
ments to the hardware which will improve query response

Software implemented CMM
Word Word + Synonyms

%Spell %w2d %Total %Spell %w2d %Total
CMM CMM CMM CMM CMM CMM

Mean 78.0 1.0 79.0 11.6 74.9 86.5
Std Dev 0.5 0.1 0.5 3.7 5.0 2.5
Min 74.4 0.8 75.3 5.8 44.9 75.8
Max 78.8 1.6 79.8 32.6 87.8 93.6

5 PRESENCE NodeCMM
Word Word + Synonyms

%Spell %w2d %Total %Spell %w2d %Total
CMM CMM CMM CMM CMM CMM

Mean 74.6 1.1 75.7 24.1 42.8 66.9
Std Dev 0.9 0.1 0.9 6.3 5.1 2.0
Min 69.8 0.8 70.9 9.8 16.5 57.1
Max 76.5 1.6 77.5 52.1 55.9 76.8

Table 2. Proportion of CMM recall time during
MinerTaur document search

Word Word + Synonyms
Total query W2D CMM Total query W2D CMM

time (ms) time (ms) time (ms) time (ms)
SW CMM 89.62 0.89 653.77 495.39
1 card CMM 238.66 1.14 547.02 242.32
2 card CMM 139.35 0.91 364.97 159.24
3 card CMM 106.61 0.89 307.83 134.42
4 card CMM 90.94 0.88 280.12 122.95
5 card CMM 78.21 0.86 263.64 115.99

Table 3. The mean performance per query
word for a MinerTaur document search using
local CMMs

times substantially.

4 Results

Training time takes longer in hardware than in software.
The word-to-document CMM training time is 14.09s in
software, or 25.71s for a 5 PRESENCE card NodeCMM. A
DistributedCMM using 28 PRESENCE cards over 6 slave
nodes trains in approximately 10 minutes.

Using the previously described batch query, tables 3 and
4 show the mean performance of CMMs that are locally-
implemented and distributed across various quantities of
PRESENCE cards. The mean time per query word for the
basic word search is 89.2 ms in software, 78.2 ms using
the 5-card NodeCMM, and 112.2 ms for a 6-node 28-card
DistributedCMM. The mean recall time for the word-to-
-document CMM was 0.89 ms in software, 0.86 ms using
the 5-card NodeCMM, and 22.85 ms for a 6-node 28-card
DistributedCMM.

Word Word + Synonyms
Total query W2D CMM Total query W2D CMM

cards Nodes time (ms) time (ms) time (ms) time (ms)
10 2 118.23 27.07 2902.86 2728.79
15 3 117.95 25.82 2773.97 2620.19
20 4 116.14 24.11 2728.10 2548.78
25 5 112.27 23.92 2698.6 2517.22
28 6 112.16 22.85 2662.46 2485.54

Table 4. The mean performance per query
word for a MinerTaur document search using
distributed hardware CMMs

5 Conclusion

This paper gives details of how multiple PRESENCE
cards have been implemented in order to provide scalability
in terms of CMM recall performance and data storage. It
has shown that the PRESENCE hardware and the new scal-
able CMM classes can be successfully taken out of the lab
and used in real-life applications on the MinerTaur Informa-
tion Retrieval system. Whilst performance gains using lo-
cally implemented PRESENCE cards may appear small for
the additional cost of the hardware, it must be remembered
that PRESENCE currently operates at 16MHz, whereas the
software CMM was executing on a 500MHz Pentium III
CPU. The next generation PRESENCE card will operate
at a far higher operating frequency and with greater par-
allelism.

The recall performance of the DistributedCMM is ap-
proximately 25 times slower than the CMMs implemented
locally. This is largely due to the communications over-
head when passing vectors between the nodes. Therefore,
the DistributedCMM should be avoided if a dataset is small
enough to be implemented locally. Larger data corpora,
however, may be unable to be implemented locally, or may
be restrictively slow, and so the DistributedCMM should
be used. For example a larger Reuters database [20] was
used that associated 477,952 documents with 62,903 words,
in order to fill the whole weights memory available on 28-
cards over six slave nodes. This dataset is a 571 MByte file
and contains far too much data to be implemented locally.
The mean time per query word for the basic word search
was 193.7 ms, of which the mean time spent recalling from
the word-document CMM was 31.36 ms.

The synonym-based search is restrictively slow using the
DistributedCMM, as the program performs multiple recall
operations as the synonym tree structure is traversed. To
avoid this problem, the synonym tree has been replaced us-
ing the k-nearest neighbour method.

The project also identified improved thresholding func-
tionality in order to enhance the spelling CMM’s recall
performance. These improvements can be trivially imple-
mented in hardware, and will be incorporated onto future

PRESENCE designs. We also identified previously unseen
performance bottlenecks in the AURA library. For instance,
the XOR operator for the AURA library’s BinaryBitVector
(BBV) class, was found to be restrictively time consum-
ing when dealing with large heavily saturated BBVs. This
problem was analysed and a more efficient algorithm im-
plemented. Finally, analysis of the original MinerTaur code
showed that the use of CMM operations were inefficient
when applied to PRESENCE. Therefore, application pro-
grammers must be aware of the hardware, and write CMM
applications with PRESENCE characteristics in mind.

References

[1] B.Fritzke, Growing Cell Structures - a Self-organizing
Network for Unsupervised and Supervised Learning.
TR-93-026, ICSI, Berkeley, CA, 1993.

[2] V.Hodge & J.Austin, An Evaluation of Standard Re-
trieval Algorithms and a Binary Neural Approach.
Neural Networks 14(3): Elsevier Science, 2001.

[3] V.Hodge & J.Austin, An Integrated Neural IR System.
In, Procs of the 9th European Symposium on Artificial
Neural Networks, April 2001.

[4] V.Hodge and J.Austin, A Novel Binary Spell Checker.
To appear in, IEEE Transactions on Knowledge and
Data Engineering.

[5] V.Hodge & J.Austin, Hierarchical word clustering -
automatic thesaurus generation. To appear in, Neuro-
Computing: Elsevier Science.

[6] S.Deerwester, S.T.Dumais, T.K.Landauer,
G.W.Furnas, and R.A.Harshman. Indexing by
Latent Semantic Analysis. Journal of the Society for
Information Science, 1(6):391–407, 1990.

[7] J.Kennedy, The Design of a Scalable and Applications
Independent Platform for Binary Neural Networks,
PhD thesis, Department of Computer Science, Univer-
sity of York, 1997.

[8] U.Manber and S.Wu, GLIMPSE: A Tool to Search
Through Entire File Systems. In, 1994 Winter
USENIX Technical Conference, 1994.

[9] S.Alwis and J.Austin. A novel architecture for trade-
mark image retrieval systems. InElectronic Work-
shops in Computing. Springer, 1998.

[10] J.Austin, J.Kennedy, and K.Lees. The advanced un-
certain reasoning architecture. InWeightless Neural
Network Workshop, 1995.

[11] J.Austin, J.Kennedy, and K.Lees. A neural architec-
ture for fast rule matching. InArtificial Neural Net-
works and Expert Systems Conference (ANNES ’95),
Dunedin, New Zealand, December 1995.

[12] A.Moulds, R.Pack, Z.Ulanowski, and J.Austin. A
high performance binary neural processor for PCI and
VME bus-based systems. InWeightless Neural Net-
works Workshop, 1999.

[13] A.Turner and J.Austin. Performance evaluation of a
fast chemical structure matching method using dis-
tributed neural relaxation. InFourth International
Conference on Knowledge-Based Intelligent Engi-
neering Systems, August 2000.

[14] M.Weeks, J.Austin, A.Moulds, A.Turner,
Z.Ulanowski, and J.Young. Mapping correlation
matrix memories onto a beowulf cluster. Interna-
tional Conference on Artificial Neural Networks
(ICANN2001), Vienna, Austria, 21 –25 August 2001.

[15] P.Zhou and J.Austin. A PCI bus based correlation ma-
trix memory and its application to k-nn classification.
In MicroNeuro’99, Granada, Spain, April 1999.

[16] D.J.Willshaw, O.P.Buneman, H.C.Longuet-Higgins.
Non-holographic associative memory. Nature
222(1969), 960-962.

[17] D.P.Casasent and B.A.Telfer. High capacity pattern
recognition associative processors. Neural Networks
5(4), 251-261, 1992.

[18] Jim Austin. Distributive associative memories for high
speed symbolic reasoning. Int. J. Fuzzy Sets Systems,
82, 223-233, 1996.

[19] Reuters-21578. The Reuters-21578, Distribu-
tion 1.0 test collection is available from David
D. Lewis’ professional home page, currently:
http://www.research.att.com/�lewis.

[20] Reuters Corpus. Volume 1: English
language, 1996-08-20 to 1997-08-19, at
http://www.reuters.com/researchandstandards/corpus

The research detailed in this paper was funded by EPSRC
grant numbers GR/L74651 and GR/K41090.

