A Hardware-Accelerated Novel IR System

Michael Weeks, Victoria J.Hodge and Jim Austin
Advanced Computer Architecture Group,
Computer Science Department,

University of York,
Heslington, York, UK
(mweeks,vicky,austin)@cs.york.ac.uk

Abstract prises three modules, a spell checking pre-processor to
identify errors in the user query, a synonym hierarchy to
AURA (Advanced Uncertain Reasoning Architecture) is allow paraphrased documents to be matched and a word-
a generic family of techniques and implementations in- document indexing module to identify documents match-
tended for high-speed approximate search and match op-ing particular query words. All modules rely on a fast ef-
erations on large unstructured datasets. This paper centin ficient data structure to under-pin the system. The dedi-
ues the AURA Il (Advanced Uncertain Reasoning Architec- cated hardware provides a fast and efficient indexing data
ture) project’s research into distributed binary Correila structure. We implement MinerTaur using binary Correla-
Matrix Memory (CMM) based upon the PRESENCE (PaR- tion Memory Matrices (CMMs) on PCl-based PRESENCE
allEl Structured Neural Computing Engine) hardware ar- cards in a Beowulf PC cluster named Cortext1This pa-
chitecture [14]. Previous work has described how CMMs per provides comparisons between a software implementa-
can be seamlessly implemented onto multiple hardwaretion of the MinerTaur CMM data structures and the parallel
PRESENCE cards to accelerate core CMM operations. To hardware implementation to investigate the comparative re
demonstrate the system, this paper describes how a novelrieval speeds.

CMM-based information retrieval (IR) system, called Min- The paper first introduces the AURA architecture, in-
erTaur, was implemented using multiple PRESENCE cardscluding the AURA library, the PRESENCE PCl-card and
distributed across a cluster. the new hardware-based additions to the AURA library.

This is followed by a description of the techniques used
to map a CMM over a distributed system. The Miner-
1 Introduction Taur system follows and the seamless method by which
MinerTaur is implemented onto the hardware. We de-
Over the years the amount and range of stored text hadail the empirical comparisons between the software and
expanded rapidly, overwhelming both users and tools de-multiple-PRESENCE card CMM implementations of Min-
signed to index and search the text. It is impossible to indexerTaur. The paper closes with conclusions from the work,
this information dynamically at query time due to the sheer and future work.
volume so an index must be pre-compiled and stored in a
compact and fast data structure. Much of the textis unstruc-o ~ AURA
tured so the data structure to index such a repository must
be constructed solely from the unstructured text, storgig a . ,)
sociations between words and the documents that contain AURA (_Advarped Uncer.tam Reasqnmg Archltgcturg)
them. A search tool is also required to link to the index and 1S @ generic family of techniques and implementations in-
enable the user to pinpoint their required information. The t€nded for high-speed approximate search and match op-
user's query and the unstructured text repository may con-€rations on large unstructured datasets [10]. AURA tech-

tain spelling errors so a spelling mechanism is an essential’©109y is fast, economical, and offers unique advantages
component of the search tool. for finding near-matches not available with other methods.

In this paper we describe and empirically evaluate an AURA is based on a high-performance binary neural net-

information retrieval system [3], named Min_erTaur imple- 1Cortex-1 consists of seven 500MHz PC nodes connected by BidOM
mented on a parallel hardware platform. MinerTaur com- Ethernet, six nodes of which contain 28 PCI-PRESENCE cards.

work called Correlation Matrix Memory (CMM). Typically, output pattern for

several CMM elements are used in combination to solve soft docurrent 5
or fuzzy pattern-matching problems. oo (ﬁ oo
AURA takes large volumes of data and constructs a spe- 0 aar dvar k
cial type of compressed index. AURA finds exact and near- | nput pattern 1 bat
matches between indexed records and a given query, where keywords for o 38‘3’
the query itself may have omissions and errors. The degree bat, el ephant 1 el ephant
of nearness required during matching can be varied through ~ & 9ol dfi sh 0 fox
thresholding techniques. e T goldfish
In addition to the MinerTaur IR system, there are an in- cpoos =
creasing range of applications for AURA. These include a EEBEEE--:-:----E
postal address matcher, high-speed rule-matching systems 55888 8

[11], high-speed classifiers (e.g. novel k-NN implementa-
tions) [15], structure-matching (e.g. 3D molecular struc-

tures) [13], and trademark-database searching [9]. Figure 1. An example of an inverted index

teach

2.1 Correlation Matrix Memories

CMMs are neural networks for the storage and retrieval €asily, & powerful software library is also required. The
of vector patterns. Each column of the matrix is seen as aobiect-oriented AURA library, written in C++, allows for
neuron, and each row represents an input and synapses t€ creation and manipulation of CMMs, in addition to pre-
each neuron. The PRESENCE hardware architecture connd post-processing algorithms. The library has been writ-
sists basically of a binary correlation matrix neural netwo ~ t€n for several machine-OS-compiler combinations, though
implemented in memory. In common with the CMM con- We are initially concerned with Linux and the GNU gcc
cept, the PRESENCE card has two main modes of opera-compiler.
tion; teach and recall. In teach mode, the input and output AURA CMM objects can be instantiated so that they are
binary pattern vectors are supplied to the card over the PCImapped onto the PRESENCE hardware, or are simulated in
bus. Recall is achieved by issuing only the input binary software. CMM classes were initially designed as software
vector, and on completion, the resulting summed column Simulations to investigate the CMM concept, to experiment
data of the CMM can be read unprocessed from the card forwith new features, and to enable application development
post-processing, or hardware thresholding can be appiied t Whilst the hardware progressed.
the data to sort the best matches. Two types of hardware This project has added two new CMM classes to the
thresholding can be applied (Willshaw or Lmax) dependent AURA library in the form of the NodeCMM and Dis-
upon the application. Willshaw [16] thresholding compares tributedCMM implementations (see subsections 2.4 and
the summed columns with a thresholded level, whilst Lmax 2.5). The NodeCMM object stripes a CMM across mul-
[17] retrieves the top. matches from all of the summed tiple PRESENCE cards in a node. The DistributedCMM
columns. A detailed operation of CMM neural networks Object stripes a CMM across multiple nodes of a cluster
can be found at [18]. via a client-server mechanism. The DistributedCMM can

CMM techniques lend themselves for use in such ap- make use of either hardware-based NodeCMMs or software
plications as inverted indexes, whereby objects are storedcMMs.
in the CMM categorised by certain attributes. A keyword
search of documents, for instance, where the output patterr2.3 PRESENCE Architecture
associates one or more bits with a list of documents, and the
input pattern describes keywords in the documents. Figure T section gives a brief overview of the operation of the
Lillustrates how documents and keywords are taught into apRESENCE architecture. PRESENCE is the current fam-
CMM. A recall operation applies selected keywords as the jy of hardware designs that accelerate the core CMM com-
input pattern, and the column counts of the output patternations needed in AURA applications. A more detailed

contain matching documents. discussion of the PRESENCE architecture can be found in
_ [12]. The PRESENCE card utilises the PCI-bus interface,
2.2 AURA Library to allow it to be used on standard desktop computer sys-

tems, and to give the CPU fast access to the card. The card
Building high performance pattern matching architec- is a PCI-slave device, and contains the pipeliSediming
tures is not sufficient to exploit the architecture fully and and Thresholding (SAT) processor that accelerates CMM

Presence

operation. The card has 128 MByte of low-cost DRAM for

_ _ ! Striped learn operation card CMMs
CMM weights memory, configured as 8Mwords of 128-bit
width.
The recall performance of a Willshaw-thresholded single Input g
PRESENCE card is given in equation 1, wheig the clock vector‘ 2| inputvesor 1
period of the binary neural SAT processfrjs the CMM = A
output (separator) vector width in bits afds the number 7y
of index or keyword terms that the recall is trying to match
against. 1
s : A
. = | — Outpu E itriped
TWlllshaw - ‘ 128 T (52 +2 I) +23-7 (1) vez:)ort ;i vgctgii
The PRESENCE cards clock period, is currently
fixed at z7r775, therefore the performance of a Willshaw- Striped recall operation card O

thresholded recall operation is proportional to the vdeiab
termsI andS. Using a single PRESENCE board, the only
option for reducing these variables is vector compression. | .
However, vector compression increases the number of false vecter
matches leading to a need for computationally-slow post-
process checking.

With multiple PRESENCE boardd, and S can be re-
duced by striping their respective vectors across the cards
and has the added benefit of scalable weights memory.
However, whilst it is possible to stripe the index vectorove ‘322{’0“*
multiple cards, a recall operation will require the retakv
of raw column data from the cards before performing col-
umn summation and thresholding in software. This will be
restrictively slow as the parallelism and functionalitytiog
PRESENCE card is bypassed.

Output vector striping, however, is feasible and fully
utilises the characteristics of the PRESENCE architecture
(see figure 2). Willshaw-thresholding scales naturallyoont
multiple cards, though not with Lmax-thresholding. Lmax- The NodeCMM class allows the transparent creation and
thresholding requires software thresholding on raw col- manipulation of CMM objects within a single PC node. The
umn data, or alternatively it can be achieved using repeatCMM will be allocated on one or more PRESENCE cards,
Willshaw-thresholding with a decrementing level. Fortu- such that the user does not know, or need to know the loca-
nately, the use of Lmax-thresholding in applications is un- tion(s) of the data across the cards. It is almost identical i
common. use to the software CMMs provided in the AURA library,

The following sections describes how a scalable multi- though some differences exist which are explained below.

-PRESENCE card CMM can be implemented in a dis- gyriping a CMM across multiple cards decreases the re-
tributed memory cluster such as Cortex-1. We identify two 5| time considerably. Therefore, for CMMs with a sepa-

levels of PRESENCE scalability, board-levelstripingWith 5y size greater than 128-bits, multiple PRESENCE cards
a node, and node-level striping within the cluster. are used.

In theory, the five PRESENCE cards operate in paral-
lel, so there should be only a small penalty over the single
card operation. In practice however, the PRESENCE driver,

On a single node of the Cortex-1 cluster we can install which is a sequential process, must initiate the five boards,
and operate up to five PRESENCE cards in parallel over thecheck on their progress, then retrieve the data upon com-
PCl-bus. This gives a combined CMM memory space of pletion. Tests show that whilst Willshaw-thresholded Heca
640MByte. Whilst this technique greatly increases the size times are substantially lower than the five cards operating
of the CMM that can be implemented, it presents challengesindividually, the overhead on the multiple recall is higher
when allocating, teaching and recalling. than expected. Analysis proved that this overhead is in the

input vector

-

striped
output
vectors

AAAAA

BT

Figure 2. Data-flow for separator striped learn
and recall operations

2.4 PRESENCE Board-level CMM Striping

section of driver code that retrieves the data from the card,storage capacity further, it must be distributed across mul
via the PCI bus. tiple machines. The CMM is distributed across multiple
nodes in the Cortex-1 cluster via separator striping, simil
) to that described in section 2.4. A client-server framework
6 was created that allowed the creation of remote CMMs
%0 across a network. The remote CMMs can be either soft-
80 ware or the PRESENCE-based NodeCMM. For communi-
10 cation tasks we used the ACE library (Adaptive Commu-
nication Environment§, which provides a library of com-
mon communication software tasks across a range of oper-
10000 ating system platforms. A wrapper class, call2idtribut-
 Number of edCMM encapsulates the underlying cluster infrastructure
separator bits set and PRESENCE cards so they are hidden from the applica-
tion programmer. In this way, converting the existing appli
cations to distributed PRESENCE cards would simply be a
Figure 3. 32,768 x 32,768 NodeCMM Willshaw- matter of re-declaring the CMM objects and re-compiling.
thresholded recall performance

NodeCMM recall performance

Recall time in ms

PN WD N
[eNelelsNeNeNeNeNe)
T T T T T T

200
400
600 5565

000
Number of index bi 12001400 755
umber of index bits set
1800 50ppL00

3 MinerTaur IR System

Many IR systems employ inefficient data structures.

Software CMM recall Performance . Glimpse [8] uses a two-level index that is only suitable for
., 8000 — go00 small system storage. Bayesian networks and node-based
£ 6o ‘000 neural networks suffer the explosion of nodes as the number
£ oo 2000 of nodes increases exponentially with the number of doc-
£ 3000 0 uments stored. Other systems minimise storage by incor-
= porating various data compression techniques. Latent Se-
) 0 mantic Indexing [6] reduces the size of the word-document
matrix. However, low-level information may be factored
Numberof separtor bis set out and the decomposition process is exceedingly time con-
Number of index bits set 1890 2000100 suming and computationally expensive. In the system eval-
uated in this paper, we use orthogonal vectors to represent
Figure 4. 32,768 x 32,768 EfficientCMM words and documents. Orthogonal vectors ensure accurate
Willshaw-thresholded recall performance retrieval and thus maximise system speed and throughput.

Orthogonal vectors produce no false matches unlike other
vector compression process such as vectors with multiple
bits set [7].

An application was written to compare the performance Qur overall IR system [3] comprises three modules: a
of the NodeCMM and EfficientCMM classes. The Effi- gspell checker, a hierarchical thesaurus and finally a word-
cientCMM is a type of software simulated CMM that stores document association index. We briefly describe each mod-
bits in the CMM matrix in a compacted format. Each CMM e below with citations to more detailed descriptions.
type was initialised with both input and output vector wilth The first module is dront-end spell-checking system
of 32768 bits. Recall operations were then performed with [4] to isolate any mis-spelt query words by validating each
varying input and output vector saturation levels that were query word against the lexicon. The module uses 2 CMMs:
randomly set. Figures 3 and 4 compare the Willshaw- gne for Hamming Distance and n-gram spelling and one for

thresholded recall performance of the two CMMs. phonetic matching. If a word is not validated we assume a
spelling error and our spell-checking module providesta lis
2.5 Node-level Parallelism of the best candidate matches for the user to select from.

We integrate the outputs of the 2 CMMs and score the can-

The limitations of the simulated CMM are that its stor- didate matches. All query words are correctly spelt in our
age capacity scales with system memory, and large highly-evaluation, so only a validation step is necessary.
saturated CMMs can be slow. Using PRESENCE cards, 1he second module istéerarchical thesauruswe gen-
storage capacity is limited to 128MByte or 640MByte with €rate automatically from the corpus. We employ a statisti-
a maximum of 5 cards per machine. To scale the CMM’S Z2available from http://www.cs.wustl.eduschmidt/ACE.html

cal gathering and inference methodology to automatically CMM Rows| Columns| Memory size
evolve a hierarchical thesaurus from word co-occurrence Spelling 2000 48767 | 1.393 MByte
statistics in the text corpus. Words are grouped in to ctaste Phonetic 68 48767 389 kByte
by their contextual similarities using the average context Word-Doc | 48767 18250| 7.989 MByte
vectors and our TreeGCS [5] growing hierarchical cluster-
ing algorithm, built upon Fritzke's Growing Cell Structsre
[1]. We can then exploit the distances within the synonym
hierarchy to ascribe scores to query words and their syn-
onyms. The scores are added to the matching document
output from the word-document matrix.

The third module is &inary word-document CMM for
fast training and rapid partial match retrieval [2]. Eactvro
of the matrix effectively indexes a particular word and each
column effectively indexes a specific document and a bit
is set at positionij if word; occurs indocument;. To re-
trieve all documents matching a query word, we activate the
matrix rows indexed by the words and retrieve all columns
where a bit is set. We multiply this output vector by the
word score to score the matching documents.

Table 1. MinerTaur CMM configuration

19<eywords were extracted from the file to search the doc-
uments. The three MinerTaur CMMs: the spelling, pho-
netic, and word-to-document CMMs are initially taught

with input-output associations from data files. The size of
the individual CMMs are given in table 1.

To test the performance of PRESENCE in real life ap-
plications it was decided to implement the MinerTaur ap-
plication’s Word-Doc CMM using the NodeCMM and the
DistributedCMM objects, using various numbers of PRES-
ENCE cards. A batch query was added to the MinerTaur
back-end code in order to gather system performance data.

_ 3 [T ER The batch query consists of 1200 sets of randomly gener-

bills G Gislly ated query word combinations. The combinations are or-

@@@ R EGE R ganised as 100 examples each of 1 word to 12 word queries.

QUi ot cocoa 2 seach | The batch query was performed with batlerd andword
[istemming []Synonyms and synonymsearches.

Matches: [[00% 1D 2291 UGk: HOg prices TUMBIE a8 sUpplies (NCIease, COCOA galns

Converting the code from the software CMM class to the
two PRESENCE-based CMM class should be trivial. The-
oretically, a simple re-declaration of the Word-Doc CMM

L00% ID: 2355 UK: Silver fines at two-month high, but gold lags

[L00% 1D 3047 UK: LCE coffee ends mised, U 5. stocks largely ignered

100% ID: 3701 USA: NY Sen Leichter says NYC does not get quot;fair share quot;.
[L00% 1D 4123 USA: U S. cocoa and coffee exports—-Commerce

[100% 1D 4956 USA: Crude oil prices fall after inventory reports

L00% ID: 5013 UK: U.S. crop survey supports grains prices

100% 1D 5811 UK: REL commodity traders to join C Lyonnais Rouse

L60% 10 7555 A Wb meods 3 o whah porcan havs thot Batar” object should suffice. In practice however, when recalling
100% 1D: 10243 UK Oil is in demand, other commeoedities see dull trade

o D 10098 U o D e e e e i o data, the software must be optimised to maximise the per-
1005 1D 13354 U, Stocke siak 51 lome et 15105 Jom 0.7 pereem formance gains obtainable from PRESENCE. For instance,

the application initially made use of raw column-count re-
calls that were then thresholded using software algorithms
In hardware, Willshaw-thresholded recalls are an order of
magnitude faster than a raw column-count recall, and re-
quires no threshold post-processing by the system CPU.
Therefore, for raw CMM recalls that are then Willshaw-
MinerTaur uses a Java front-end (figure 5) to interface thresholded in software, the two operations can be replaced
with a back-end C++ library that implements the main com- by a single hardware Willshaw-thresholded recall. This re-
ponents of the IR system. The Java code accepts key-uired some sections of the code to be rewritten and certain
word inputs and passes them to the C++ library. We functions to be in-lined due to complexities in the flow of
pass each query word through each of the three modulesiata.
in turn, retrieving a set of matching documents from the Future improvements to the hardware performance can
word-document matrix. We produce a separate vector foronly be beneficial if current application performance is
each query word with an attribute for each document rep- heavily degraded by CMM recall operations. Data from
resenting the document’s score with respect to the specificthe batch query was analysed for the amount of time spent
guery word. We can then rank the documents by summingperforming CMM recalls during a MinerTaur query was
all query word vectors to generate a cumulative documentrecorded in table 2. Data is given faord andword and
score vector. Assuming that the keywords chosen are spelsynonym searches implemented using both locally imple-
correctly and are present in the document list, the library mented hardware and software CMMs. From this data it can
code returns the list of documents that contain the keywordsbe seen that when MinerTaur is implemented using a 5-card
and their degree of confidence. NodeCMM, 67-76% of program execution time is spent in
The initial document corpus was 15.5 MBytes in size and recall operations. This provides justification for impreve
contained 18249 Reuters document abstracts [19]. 47,988nents to the hardware which will improve query response

Figure 5. Snapshot of MinerTaur’'s Java user-
interface

Software implemented CMM Word Word + Synonyms
Word Word + Synonyms # # Total query | W2D CMM | Total query | W2D CMM
%Spell | %w2d | %Total | %Spell | %w2d | %Total cards | Nodes time (ms) time (ms) time (ms) time (ms)
CMM CMM CMM CMM CMM CMM 10 2 118.23 27.07 2902.86 2728.79
Mean 78.0 1.0 79.0 11.6 74.9 86.5 15 3 117.95 25.82 2773.97 2620.19
Std Dev 0.5 0.1 0.5 3.7 5.0 2.5 20 4 116.14 24.11 2728.10 2548.78
Min 74.4 0.8 75.3 5.8 44.9 75.8 25 5 112.27 23.92 2698.6 2517.22
Max 78.8 1.6 79.8 32.6 87.8 93.6 28 6 112.16 22.85 2662.46 2485.54
5 PRESENCE NodeCMM
Word Word + Synonyms
GSpell | Y%w2d | Y6Towl | %Spell | %w2d | %Totl Table 4. The mean performance per query
CMM | CMM | CMM | CMM | CMM | CMM word for a MinerTaur document search using
Mean 74.6 1.1 75.7 24.1 42.8 66.9 . .
Std Dev 00 01 09 63| 51 2.0 distributed hardware CMMs
Min 69.8 0.8 70.9 9.8 16.5 57.1
Max 76.5 1.6 775 52.1 55.9 76.8

_ _ _ 5 Conclusion
Table 2. Proportion of CMM recall time during

MinerTaur document search This paper gives details of how multiple PRESENCE

cards have been implemented in order to provide scalability
in terms of CMM recall performance and data storage. It

Word Word + Synonyms _
TomTGueTy | W2D CMINT | Total query | W2D MM has shown that the PRESENCE hardware and the new scal
time (ms) | time (ms) | time(ms) | time (ms) able CMM classes can be successfully taken out of the lab
SW CMM 89.62 0.89 653.77 495.39 i _li i i i
B e T e S a_md used_ in real-life appllce_ltlons onthe MmerTgur Inf_orma
2 card CMM 139.35 0.01 364.97 159.24 tion Retrieval system. Whilst performance gains using lo-
3 card CMM 106.61 0.89 307.83 134.42 cally implemented PRESENCE cards may appear small for
4 card CMM 90.94 0.88 280.12 122.95 . .
5 card CViM 7857 086 56364 11599 the additional cost of the hardware, it must be remembered

that PRESENCE currently operates at 16MHz, whereas the
software CMM was executing on a 500MHz Pentium llI

Table 3. The mean performance per query CPU. The next generation PRESENCE card will operate
word for a MinerTaur document search using at a far higher operating frequency and with greater par-
local CMMs allelism.

The recall performance of the DistributedCMM is ap-
proximately 25 times slower than the CMMs implemented
locally. This is largely due to the communications over-
times substantially. head when passing vectors between the nodes. Therefore,

the DistributedCMM should be avoided if a dataset is small

enough to be implemented locally. Larger data corpora,
4 Results however, may be unable to be implgmgnted locally, or may
be restrictively slow, and so the DistributedCMM should
be used. For example a larger Reuters database [20] was
used that associated 477,952 documents with 62,903 words,
in order to fill the whole weights memory available on 28-

The word-to-document CMM training time is 14.09s in cards over six slave nodes. This dataset is a 571 MByte file
software, or 25.71s fora 5 PRESENCE card NodeCMM. A 54 ¢ontains far too much data to be implemented locally.

DistributedCMM using 28 PRESENCE cards over 6 slave The mean time per query word for the basic word search
nodes trains in approximately 10 minutes.

Training time takes longer in hardware than in software.

was 193.7 ms, of which the mean time spent recalling from
Using the previously described batch query, tables 3 andthe word-document CMM was 31.36 ms.
4 show the mean performance of CMMs that are locally- The synonym-based search is restrictively slow using the
implemented and distributed across various quantities ofDistributedCMM, as the program performs multiple recall
PRESENCE cards. The mean time per query word for the operations as the synonym tree structure is traversed. To
basic word search is 89.2 ms in software, 78.2 ms usingavoid this problem, the synonym tree has been replaced us-
the 5-card NodeCMM, and 112.2 ms for a 6-node 28-card ing the k-nearest neighbour method.
DistributedCMM. The mean recall time for the word-to- The project also identified improved thresholding func-
-document CMM was 0.89 ms in software, 0.86 ms using tionality in order to enhance the spelling CMM's recall
the 5-card NodeCMM, and 22.85 ms for a 6-node 28-card performance. These improvements can be trivially imple-
DistributedCMM. mented in hardware, and will be incorporated onto future

PRESENCE designs. We also identified previously unseen[11] J.Austin, J.Kennedy, and K.Lees. A neural architec-

performance bottlenecks in the AURA library. For instance, ture for fast rule matching. IArtificial Neural Net-
the XOR operator for the AURA library’s BinaryBitVector works and Expert Systems Conference (ANNES '95)
(BBV) class, was found to be restrictively time consum- Dunedin, New Zealand, December 1995.

ing when dealing with large heavily saturated BBVs. This
problem was analysed and a more efficient algorithm im- [12]
plemented. Finally, analysis of the original MinerTaur eod
showed that the use of CMM operations were inefficient
when applied to PRESENCE. Therefore, application pro-
grammers must be aware of the hardware, and write CMM [13]
applications with PRESENCE characteristics in mind.

A.Moulds, R.Pack, Z.Ulanowski, and J.Austin. A
high performance binary neural processor for PCl and
VME bus-based systems. Meightless Neural Net-
works Workshop1999.

A.Turner and J.Austin. Performance evaluation of a
fast chemical structure matching method using dis-
tributed neural relaxation. Iffourth International
References Conference on Knowledge-Based Intelligent Engi-
neering System#ugust 2000.

A.Turner,
Z.Ulanowski, and J.Young. Mapping correlation
matrix memories onto a beowulf cluster. Interna-
tional Conference on Atrtificial Neural Networks
(ICANNZ2001), Vienna, Austria, 21 —25 August 2001.

[1] B.Fritzke, Growing Cell Structures - a Self-organizing [14] M.Weeks J.Austin A.Moulds
Network for Unsupervised and Supervised Learning. ' ; ’
TR-93-026, ICSI, Berkeley, CA, 1993.

[2] V.Hodge & J.Austin, An Evaluation of Standard Re-
trieval Algorithms and a Binary Neural Approach.

Neural Networks 14(3): Elsevier Science, 2001. [15] P.Zhou and J.Austin. A PCI bus based correlation ma-
trix memory and its application to k-nn classification.

[3] V.Hodge & J.Austin, An Integrated Neural IR System. In MicroNeuro’99 Granada, Spain, April 1999.

In, Procs of the 9th European Symposium on Artificial

Neural Networks, April 2001. [16] D.J.Willshaw, O.P.Buneman, H.C.Longuet-Higgins.
) . Non-holographic associative memory. Nature
[4] V.Hodge and J.Austin, A Novel Binary Spell Checker. 222(1969), 960-962.
To appear in, IEEE Transactions on Knowledge and
Data Engineering. [17] D.P.Casasent and B.A.Telfer. High capacity pattern
recognition associative processors. Neural Networks
[5] V.Hodge & J.Austin, Hierarchical word clustering - 5(4), 251-261, 1992.
automatic thesaurus generation. To appear in, Neuro-
Computing: Elsevier Science. [18] Jim Austin. Distributive associative memories forinig
speed symbolic reasoning. Int. J. Fuzzy Sets Systems,
[6] S.Deerwester, S.T.Dumais, T.K.Landauer, 82, 223-233, 1996.

G.W.Furnas, and R.A.Harshman. Indexing by o
Latent Semantic Analysis. Journal of the Society for [19] Reuters-21578. The Reuters-21578, Distribu-

Information Science, 1(6):391-407, 1990. tion 1.0 test collection is available from David
D. Lewis’ professional home page, currently:
[7] J.Kennedy, The Design of a Scalable and Applications http://lwww.research.att.comlewis.
Independent Platform for Binary Neural Networks, .
PhD thesis, Department of Computer Science, Univer- [20] Reuters Corpus. Volume ~ 1: English
sity of York, 1997. language, 1996-08-20 to 1997-08-19, at

http://www.reuters.com/researchandstandards/corpus

[8] U.Manber and S.Wu, GLIMPSE: A Tool to Search .
Through Entire File Systems. In, 1994 Winter The research detailed in this paper was funded by EPSRC

[9] S.Alwis and J.Austin. A novel architecture for trade-
mark image retrieval systems. Hlectronic Work-
shops in Computingspringer, 1998.

[10] J.Austin, J.Kennedy, and K.Lees. The advanced un-
certain reasoning architecture. Weightless Neural
Network Workshopl 995.

