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Abstract—If we want to integrate autonomous aerial drones
into safety-critical contexts, particularly in dynamic and haz-
ardous environments like mining operations, we need to rig-
orously assure their safety. Despite significant technological
advancements in drone technology over the past decade, this
remains a challenge. The current safety engineering methods
employed in drones cannot demonstrate convincingly that AI
techniques can effectively mitigate unsafe situations with a
specified level of confidence and reliability. In this paper, we
present a brief study of various approaches, with particular focus
on the situation coverage-based approach. A key challenge lies in
identifying a finite set of representative situations for testing from
the infinite possibilities that could occur in real-world scenarios.
This research contributes to advancing our understanding of
situation coverage based safety assessment methodologies and
coverage criteria.

Index Terms—drone, safety, testing, situation, coverage, mine

I. INTRODUCTION

Autonomous Aerial Drones (AAD) have become popular
across various domains, including military operations, envi-
ronmental monitoring, and agricultural activities. Establishing
a detailed safety assessment process for AAD, especially in
settings with humans like mines, is crucial during the design
phase [1]. Such a process aims to identify potential failure
scenarios during AAD operation, assess their consequences,
and define mitigation measures to minimize risks. To do this,
it imperative that the process considers sufficient situations.
A novel approach for this is situation coverage based safety
testing [2], [3]. In the subsequent discussion, we will delve
into the taxonomy of situation coverage based safety testing,
exploring its foundational principles and applications derived
from existing literature.

Recent literature focuses on finding representative situation
for approving Autonomous Vehicles (AVs) using a situation-
based approach [4], [5], [6] . The diverse literature uncovers
various strategies contributing to different aspects of this
approach.To address this, we developed a taxonomy (figure
1) to organize and understand the different stages to situation
coverage based safety testing .

There are various situation sources like expert knowledge,
standards, and driving data, which can be gathered from
field tests or accident records. Recently, more organizations
are making their driving data publicly accessible [7], [8],

expanding the available resources. [9] propose a new method
using drones to capture traffic data, which offers advantages
like lower costs and less disruption, although it is limited to
shorter sections of roads. However, there are still challenges,
such as capturing highway scenarios effectively [9].

When generating scenarios, we can use either knowledge-
based methods, relying on expert knowledge stored in on-
tologies, or data-driven approaches, often employing machine
learning techniques like clustering. [10] proposed a fundamen-
tal ontology for AV guidance, which serves as a foundation
for many subsequent studies. [11] utilized ontologies to create
scenarios specifically for German highways, incorporating all
layers of their model. For data-driven scenario generation, var-
ious methods exist, such as unsupervised clustering techniques
by [12] [13], mixed similarity measures by [14], and Bayesian
learning methods by [15]. These approaches aim to extract
concrete scenarios from real driving data, which can be clas-
sified into logical scenario categories. Additionally, techniques
like Kernel Density Estimation [16] and particle filters [17] are
used to estimate and simulate scenario parameters from field
data, ensuring the safety of autonomous vehicles.

Situation coverage(SC) measures can be approached from
a Macro- or Micro- perspective [2]. Macro-SC means looking
at the situation overall and saying whether certain things are
covered.Micro-SC means that we watch the system run and
see what small-scale situations are encountered.

The goal of falsification approaches is to identify counterex-
amples that violate safety requirements during micro assess-
ment. These approaches can either select existing concrete
scenarios from a database or define logical scenarios with
parameter ranges. Selection methods include using accident
databases, modifying existing scenarios to increase criticality,
or identifying critical scenarios within predefined parameter
ranges. Several studies, such as those by [18], [19] and [20],
utilize accident data to understand system requirements and
simulate accident scenarios for system evaluation. However,
solely relying on accident data may not adequately assess
the safety of autonomous vehicles (AVs) beyond Level 3 of
autonomy [21], as it only addresses past accidents rather than
predicting future risks. Methods like the one presented in
[22] efficiently determine the risk of real traffic situations
to select critical scenarios for AV testing, focusing on the



behavior of other road users. Other studies, like those by [23]
and [24], develop frameworks to consider scenario complexity
when selecting challenging scenarios for AV testing, which
has shown to reveal more system errors. These approaches
play a crucial role in enhancing the safety assessment of AVs
by identifying and addressing potential risks in complex real-
world scenarios.

The aim of testing-based approaches for scenario selection
is to efficiently sample a subset of concrete scenarios for
micro safety assessment, which can then be aggregated for
macro assessment [25]. These approaches typically involve
one of two sampling methods: sampling within parameter
ranges or sampling from parameter distributions to incorpo-
rate scenario probability. N-wise sampling is often applied
to simpler systems like Lane-Keeping Assistants [26], while
other studies utilize techniques such as Design of Experiments
(DoE) for scenario generation [26]. Additionally, some re-
search focuses on generating road networks or modifying AV
behavior using methods like Signal Temporal Logic (STL)
monitoring or randomization of traffic vehicle parameters
[27]. Accelerated sampling methods, including Extreme Value
Theory and Importance Sampling Theory, are also used to
predict system safety levels based on real data and criticality
metrics, significantly reducing the need for extensive real-
world testing [28]. These diverse approaches contribute to
the development of comprehensive testing methodologies for
assessing AV safety.

In the following sections, we will discuss our problem and
motivation, our proposed solution, and my current research
status.

II. PROBLEM AND MOTIVATION

Our proposed research aims to develop a system-level
validation approach for autonomous aerial drone (AAD) to
ensure their safety and quality of service in mine environ-
ments. Existing safety assurance methods focus either on
component-level approaches, which lack adaptability to the
system level approaches. Therefore, the research will focus
on deriving a comprehensive system-level validation method
for autonomous vehicles [27]. The inspiration for our work
comes from [27] vision paper on system-level safety testing.
Their proposal serves as a foundational framework, which we
intend to adapt initially and refine later if necessary to suit our
test case. Our focus lies on applying their preliminary solution
for autonomous aerial drones operating within mine settings.

Our research will address the following three key research
questions:

RQ1: How can we define situation coverage of system-level
test suites for AAD?

To achieve measurable guarantees through testing, it is
essential to define coverage criteria tailored to the application
domain. While various coverage criteria exist for software
testing, there is a lack of well-defined situation coverage
criteria specific to autonomous systems testing [2]. Addressing
this gap, my research will formally define situation coverage

and explore how to define situation coverage of system-level
test suites for AAD.

RQ2: How can we evaluate situation coverage of existing
system-level test suites for AAD?

One primary application of the newly defined situation cov-
erage criteria will be the evaluation of existing test suites. By
applying situation coverage measurements to these test suites,
we can compare different test suite generation approaches
based on their achieved safety assurance level.

RQ3: How can we generate relevant test situations and
systematically drive simulation towards critical scenarios to
justifiably increase situation coverage?

The defined situation coverage concept can guide test sce-
nario generation towards scenarios that provide high coverage.
Developing a novel test suite generation approach, we aim to
define, derive, and simulate complex test scenarios efficiently
to increase situation coverage.

III. PROPOSED SOLUTION

A. Test Environment

In our research, we established a test environment in our
lab (depicted in Figure 2a) where a drone was utilized to
gather point cloud data suitable for simulations (Figures 2b
and 2c) from a ’mine’ reconstructed in the Lab. This process
was iterated twice, resulting in the creation of two mock mines
one for training navigation algorithms and one for testing.
Thus, the physical mine in the Lab and depicted in Figure
2a served as the basis for the simulated mine shown in Figure
2b, designated as the ALOFT: Self-Adaptive Drone Controller
testbed [29]. Our objective is to employ ALOFT for situation
coverage-based safety testing of AAD.

In our test scenario, a human is present on the landing
area so the AAD cannot land safely. The safety property also
requires the ALOFT self-adaptive drone controller to stop
upon detecting a human within 3 seconds, ensuring a safe
landing. We check to make sure the drone only lands when
there are no people, making sure it follows safety rules.

B. Overall Approach

1) Step 1 : Simulation — We use simulators or real
test vehicles to observe how AAD behave in specific
situations defined by test contexts.

2) Step 2: Qualitative Abstraction— We simplify the
geospatial, causal, and temporal information from these
situations using graph queries, creating situation graphs
that represent relationships as labeled graphs. These
graphs are maintained during simulation.

3) Step 3: Runtime Monitoring — We continuously mon-
itor changes in these situation graphs using complex
event processing techniques, which provide precise for-
mal semantics [30].

4) Step 4: Situation Coverage— We measure how well our
existing test scenarios cover different situations on an
abstract level. This will be done by adapting metrics
that account for model diversity and graph shapes [31],



Fig. 1. Taxonomy of Situation Coverage Based Testing Approach.

Fig. 2. ALOFT Testbed(from [29]).

ensuring a comprehensive understanding of covered sce-
narios.

5) Step 5 : Situation Generation— We automatically create
new challenging situations as abstract test cases using di-
verse graph generation techniques. This helps us expand
the range of scenarios covered by our tests [32].

6) Step 6: Context Generation— Finally, we aim to turn
abstract situations into concrete test contexts. This step
increases the practical coverage and robustness of our
test suite, making it more effective in real-world scenar-
ios.

IV. PLANNING

In this part, we describe our research plan based on the
proposed solution of section III.

1) Data Acquisition from ROS and Gazebo Simulation
[33], [34]:

• Use ALOFT [29] to access kinematic data from the
simulation environment.

• Take relevant information including drone position,
speed, and any human presence on the simulated
landing area.

2) Metamodel Creation using Eclipse [35]:
• Use Eclipse to make a metamodel that captures the

essential elements and relationships of the landing
scenario.

• Define entities such as drone, landing area, human
presence, and their respective attributes.

3) Situation Modeling with VIATRA [36]:
• Derive the relations in the qualitative abstraction

chain, we utilize graph queries employing the VI-
ATRA syntax. This syntax allows us to express
the situation model derived from the metamodel
effectively.

• Define graph patterns and rules to specify the con-
ditions and behaviors within the landing scenario.

4) Continuous Scene Monitoring with Runtime Monitoring
Algorithm [30]:

• Implement a runtime monitoring algorithm using
VIATRA to continuously monitor the simulated
scene against safety constraints.

• Define safety constraints such as the drone’s re-
sponse time to human presence and its speed re-
duction.

V. CURRENT RESEARCH STATUS

As a first-year PhD student, my goal by the end of 2024 is
to integrate the landing scenario’s metamodel into VIATRA.
Then, I aim to create a basic set of tests for AAD, run
them, and collect simple safety data, like whether a simulated
scenario results in a collision. Once this initial integration is
done, I’ll focus on RQ1 and RQ2. By mid-2025, I’ll define
”situation coverage” formally and test it using existing test
suites for AAD. Next, I’ll tackle RQ3 by creating a method to
generate scenarios that maximize situation coverage. I’ll test
this method experimentally, like I did for RQ2. Based on my
current timeline, I anticipate finishing my PhD by the end of
2026.
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