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Abstract. We present a method for estimating surface height directly
from a single polarisation image simply by solving a large, sparse sys-
tem of linear equations. To do so, we show how to express polarisation
constraints as equations that are linear in the unknown depth. The am-
biguity in the surface normal azimuth angle is resolved globally when
the optimal surface height is reconstructed. Our method is applicable to
objects with uniform albedo exhibiting di↵use and specular reflectance.
We extend it to an uncalibrated scenario by demonstrating that the illu-
mination (point source or first/second order spherical harmonics) can be
estimated from the polarisation image, up to a binary convex/concave
ambiguity. We believe that our method is the first monocular, passive
shape-from-x technique that enables well-posed depth estimation with
only a single, uncalibrated illumination condition. We present results on
glossy objects, including in uncontrolled, outdoor illumination.
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1 Introduction

When unpolarised light is reflected by a surface it becomes partially polarised [1].
The degree to which the reflected light is polarised conveys information about
the surface orientation and, therefore, provides a cue for shape recovery. There
are a number of attractive properties to this ‘shape-from-polarisation’ (SfP) cue.
It requires only a single viewpoint and illumination environment, it is invariant
to illumination and surface albedo and it provides information about both the
zenith and azimuth angle of the surface normal. Like photometric stereo, shape
estimates are dense (the surface normal is estimated at every pixel so resolution
is limited only by the sensor) and, since it does not rely on detecting or matching
features, it is applicable to smooth, featureless surfaces.

However, there are a number of drawbacks to using SfP in a practical set-
ting. The polarisation cue alone provides only ambiguous estimates of surface
orientation. Hence, previous work focuses on developing heuristics to locally dis-
ambiguate the surface normals. Even having done so, surface orientation is only
a 2.5D shape cue and so the estimated normal field must be integrated in order
to recover surface depth [2] or used to refine a depth map captured using other
cues [3]. This two step approach of disambiguation followed by integration means
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Fig. 1: Overview of method: from a single polarisation image of a homogenous, glossy object in
uncontrolled (possibly outdoor) illumination, we estimate lighting and compute depth directly.

that the surface integrability constraint is not enforced during disambiguation
and also that errors accumulate over the two steps. In this paper, we propose a
SfP method (see Fig. 1 for an overview) with the following novel ingredients:

1. In contrast to prior work, we compute SfP in the depth, as opposed to the
surface normal, domain. Instead of disambiguating the polarisation normals,
we defer resolution of the ambiguity until surface height is computed. To do
so, we express the azimuthal ambiguity as a collinearity condition that is
satisfied by either interpretation of the polarisation measurements.

2. We express polarisation and shading constraints as linear equations in the
unknown depth enabling e�cient and globally optimal depth estimation.

3. We use a novel hybrid di↵use/specular polarisation and shading model, al-
lowing us to handle glossy surfaces.

4. We show that illumination can be determined from the ambiguous normals
and unpolarised intensity up to a binary ambiguity (a particular generalised
Bas-relief [4] transformation: the convex/concave ambiguity). This means
that our method can be applied in an uncalibrated scenario and we consider
both point source and 1st/2nd order spherical harmonic (SH) illumination.

1.1 Related work

Previous SfP methods can be categorised into two groups, those that: 1. use only
a single polarisation image, and 2. combine a polarisation image with additional
cues. The former group (of which our method is a member) can be considered
‘single shot’ methods (single shot capture devices exist using polarising beam-
splitters [25] or CMOS sensors with micropolarising filters [26]). More commonly,
a polarisation image is obtained by capturing a sequence of images in which a
linear polarising filter is rotated in front of the camera (possibly with unknown
rotation angles [5]). SfP methods can also be classified according to the polar-
isation model used (dielectric versus metal, di↵use, specular or hybrid models)
and if they compute shape in the surface normal or surface height domain.

Single polarisation image The earliest work focussed on capture, decom-
position and visualisation of polarisation images [6]. Both Miyazaki et al. [2]
and Atkinson and Hancock [7] used a di↵use polarisation model and, under an
assumption of object convexity, propagate disambiguation of the surface nor-
mal inwards from the boundary. This greedy approach will not produce globally
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optimal results, limits application to objects with a visible occluding bound-
ary and does not consider integrability. Morel et al. [8] took a similar approach
but used a specular polarisation model suitable for metallic surfaces. Huynh et
al. [9] also assumed convexity to disambiguate the polarisation normals; however,
their approach also estimates refractive index. As in our method, Mahmoud et
al. [10] exploited the unpolarised intensity via a shading cue. Assuming Lam-
bertian reflectance and known lighting direction and albedo, the surface normal
ambiguity can be resolved. We avoid all of these assumptions and, by strictly
enforcing integrability, improve robustness to noise.

Polarisation with additional cues Rahmann and Canterakis [11] com-
bined a specular polarisation model with stereo cues. Similarly, Atkinson and
Hancock [12] used polarisation normals to segment an object into patches, sim-
plifying stereo matching. Huynh et al. [13] extended their earlier work to use
multispectral measurements to estimate both shape and refractive index. There
have been a number of attempts to augment polarisation cues with calibrated,
Lambertian photometric stereo, e.g. [14]. Drbohlav and Sara [15] showed how
the Bas-relief ambiguity [4] in uncalibrated photometric stereo could be resolved
using polarisation. However, this approach requires a polarised light source. Re-
cently, Ngo et al. [16] derived constraints that allowed surface normals, light
directions and refractive index to be estimated from polarisation images under
varying lighting. However, this approach requires at least 4 light directions in
contrast to the single direction required by our method. Very recently, Kadambi
et al. [3] proposed an interesting approach in which a single polarisation image
is combined with a depth map obtained by an RGBD camera. The depth map
is used to disambiguate the normals and provide a base surface for integration.

2 Problem formulation and polarisation theory

We make the following assumptions (more general than much previous work in
the area): 1. Dielectric (i.e. non-metallic) material with uniform (but unknown)
albedo. 2. Orthographic projection. 3. The refractive index of the surface is
known, though dependency on this quantity is weak and we fix it to a constant
value for all of our experiments. 4. Pixels can be classified as either di↵use domi-
nant or specular dominant. 5. The object surface is smooth (i.e. C2 continuous).

We parameterise surface height by the function z(u), where u = (x, y) is an
image point. Foreground pixels belonging to the surface are represented by the
set F , |F| = K. The unit surface normal can be expressed in spherical world
coordinates as:

n(u)=[n
x

(u) n
y

(u) n
z

(u)]T=[sin↵(u) sin ✓(u) cos↵(u) sin ✓(u) cos ✓(u)]T, (1)

and formulated via the surface gradient as follows

n(u) =
[�p(u) � q(u) 1]Tp
p(u)2 + q(u)2 + 1

, (2)

where p(u) = @

x

z(u) and q(u) = @

y

z(u), so that rz(u) = [p(u) q(u)]T .
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Fig. 2: Polarimetric capture (a) and decomposition to polarisation image (b-d).

2.1 Polarisation image

When unpolarised light is reflected from a surface, it becomes partially polarised.
There are a number of mechanisms by which this process occurs. The two models
that we use are described in Sect. 2.2 and are suitable for dielectric materials.
A polarisation image (Fig. 2b-d) can be estimated by capturing a sequence of
images (Fig. 2a) in which a linear polarising filter in front of the camera is rotated
through a sequence of P � 3 di↵erent angles #

j

, j 2 {1, . . . , P}. The intensity
at a pixel varies sinusoidally between Imin and Imax with the polariser angle:

i

#j (u) =
Imax(u) + Imin(u)

2
+

Imax(u)� Imin(u)

2
cos[2#

j

� 2�(u)]. (3)

The polarisation image is obtained by decomposing the sinusoid at every pixel
into three quantities [6]. These are the phase angle, �(u), the degree of polarisa-

tion, ⇢(u), and the unpolarised intensity, iun(u), where:

⇢(u) =
Imax(u)� Imin(u)

Imax(u) + Imin(u)
and iun(u) =

Imax(u) + Imin(u)

2
. (4)

The parameters of the sinusoid can be estimated from the captured image se-
quence using nonlinear least squares [7], linear methods [9] or via a closed form
solution [6] for the specific case of P = 3, # 2 {0�, 45�, 90�}. See supplementary
material for details of our sinusoid fitting scheme.

2.2 Polarisation models

A polarisation image provides a constraint on the surface normal direction at
each pixel. The exact nature of the constraint depends on the polarisation model
used. We assume that the object under study is composed of a dielectric material
exhibiting both di↵use reflection (due to subsurface scattering) and specular
reflection (due to direct reflection at the air/surface interface). We make use of
both types of reflection. This model is particularly suitable for smooth, glossy
materials such as porcelain, skin, plastic and surfaces finished with gloss paint.
We follow recent works [3,17] and assume that reflection from a point can be
classified as di↵use dominant or specular dominant (see supplementary material
for our classification scheme). Hence, a pixel u belongs either to the set of di↵use
pixels, D, or the set of specular pixels, S, with F = D [ S.
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Fig. 3: (a) Relationship between degree of polarisation and zenith angle, for specular and di↵use
dielectric reflectance with ⌘ = 1.5. (b) Estimated zenith angle from degree of polarisation in Fig.
2b. (c) Visualisation of estimated zenith angle.

Di↵use polarisation model For di↵use reflection, the degree of polarisa-
tion is related (Fig. 3a, red curve) to the zenith angle ✓(u) 2 [0, ⇡

2 ] of the normal
in viewer-centred coordinates (i.e. the angle between the normal and viewer):

⇢(u) =
sin(✓(u))2

⇣
⌘ � 1

⌘

⌘2

4 cos(✓(u))
q
⌘

2 � sin(✓(u))2 � sin(✓(u))2
⇣
⌘ + 1

⌘

⌘2

+ 2 ⌘2 + 2
, (5)

where ⌘ is the refractive index. The dependency on ⌘ is weak and typical values
for dielectrics range between 1.4 and 1.6. We assume ⌘ = 1.5 for the rest of this
paper. This expression can be rearranged to give a closed form solution for the
zenith angle in terms of a function, f(⇢(u), ⌘), that depends on the measured
degree of polarisation and the refractive index:

cos(✓(u)) = n(u) · v = f(⇢(u), ⌘) = (6)
s

2 ⇢+ 2 ⌘2 ⇢� 2 ⌘2 + ⌘

4 + ⇢

2 + 4 ⌘2 ⇢2 � ⌘

4
⇢

2 � 4 ⌘3 ⇢
p
� (⇢� 1) (⇢+ 1) + 1

⌘

4
⇢

2 + 2 ⌘4 ⇢+ ⌘

4 + 6 ⌘2 ⇢2 + 4 ⌘2 ⇢� 2 ⌘2 + ⇢

2 + 2 ⇢+ 1

where we drop the dependency of ⇢ on u for brevity. Since we work in a viewer-
centred coordinate system, the viewing direction is v = [0 0 1]T and we have
simply: n

z

(u) = f(⇢(u), ⌘), or, in terms of the surface gradient,

1p
p(u)2 + q(u)2 + 1

= f(⇢(u), ⌘). (7)

The phase angle determines the azimuth angle of the surface normal ↵(u) 2
[0, 2⇡] up to a 180� ambiguity: u 2 D ) ↵(u) = �(u) or (�(u) + ⇡). Hence,
for a di↵use pixel u 2 D, this means that the surface normal is given (up to an
ambiguity) by either n(u) = n̄(u) or n(u) = Tn̄(u) where

n̄(u) =

2

4
sin�(u) sin ✓(u)
cos�(u) sin ✓(u)

cos ✓(u)

3

5 and T = R

z

(180�) =

2

4
�1 0 0
0 �1 0
0 0 1

3

5
. (8)
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Specular polarisation model For specular reflection, the degree of po-
larisation is again related to the zenith angle (Fig. 3a, blue curve):

⇢

s

(u) =
2 sin(✓(u))2 cos(✓(u))

p
⌘

2 � sin(✓(u))2

⌘

2 � sin(✓(u))2 � ⌘

2 sin(✓(u))2 + 2 sin(✓(u))4
. (9)

This expression is problematic for two reasons: 1. it cannot be analytically in-
verted to solve for zenith angle, 2. there are two solutions. The first problem is
overcome simply by using a lookup table and interpolation. The second problem
is not an issue in practice. Specular reflections occur when the surface normal
is approximately halfway between the viewer and light source directions. We as-
sume that the light source s is positioned in the same hemisphere as the viewer,
i.e. v · s > 0. In this configuration, specular pixels will never have a zenith angle
> ⇠45�. Hence, we can restrict (9) to this range and, therefore, a single solution.

In contrast to di↵use reflection, the azimuth angle of the surface normal is
perpendicular to the phase of the specular polarisation [18] leading to a ⇡

2 shift:
u 2 S ) ↵(u) = (�(u)� ⇡/2) or (�(u) + ⇡/2).

Figure 3b shows zenith angle estimates using the di↵use/specular model on
D/S respectively. In Fig. 3c we show the cosine of the estimated zenith angle, a
visualisation corresponding to a Lambertian rendering with frontal lighting.

2.3 Shading constraint

The unpolarised intensity provides an additional constraint on the surface normal
direction via an appropriate reflectance model. We assume that, for di↵use-
labelled pixels, light is reflected according to the Lambertian model. We also
assume that albedo is uniform and factor it into the light source vector s. Hence,
unpolarised intensity is related to the surface normal by:

u 2 D ) iun(u) = cos(✓
i

(u)) = n(u) · s, (10)

where ✓

i

(u) is the angle of incidence (angle between light source and surface
normal). In terms of the surface gradient, this becomes:

iun(u) =
�p(u)s

x

� q(u)s
y

+ s

zp
p(u)2 + q(u)2 + 1

. (11)

Note that if the light source and viewer direction coincide (a configuration that is
physically impossible to achieve precisely) then this equation provides no more
information than the degree of polarisation. Hence, we assume that the light
source direction is di↵erent from the viewing direction, i.e. s 6= v.

For specular pixels, we do not use the unpolarised intensity directly (though it
is used in the labelling of specular pixels - see supplementary material). Instead,
we assume simply that the normal is approximately equal to the halfway vector:

u 2 S ) n(u) ⇡ h = (s+ v)/ks+ vk. (12)



Linear depth estimation from an uncalibrated, monocular polarisation image 7

3 Linear depth estimation with known illumination

We now show that the polarisation shape cues can be expressed as per pixel equa-
tions that are linear in terms of the surface gradient. By using finite di↵erence
approximations to the surface gradient, this allows us to write the problem of
depth estimation in terms of a large system of linear equations. This means that
depth estimation is both e�cient and certain to obtain the global optimum. In
this section we assume that the lighting and albedo are known. However, in the
following section we describe how they can be estimated from the polarisation
image, allowing depth recovery with uncalibrated illumination.

3.1 Polarisation constraints as linear equations

First, we note that the phase angle constraint can be written as a collinearity
condition. This condition is satisfied by either of the two possible azimuth angles
implied by the phase angle measurement. Writing it in this way is advantageous
because it means we do not have to disambiguate the surface normals explicitly.
Instead, when we solve the linear system for depth, the azimuthal ambiguities are
resolved in a globally optimal way. Specifically, for di↵use pixels we require the
projection of the surface normal into the x-y plane, [n

x

n

y

], and a vector in the
image plane pointing in the phase angle direction, [sin(�) cos(�)], to be collinear.
These two vectors are collinear when the following condition is satisfied:

n(u) · [cos(�(u)) � sin(�(u)) 0]T = 0. (13)

Substituting (2) into (13) and noting that the nonlinear term in (2) is always
> 0 we obtain the first linear equation in the surface gradient:

� p(u) cos(�(u)) + q(u) sin(�(u)) = 0. (14)

A similar expression can be obtained for specular pixels, substituting in the ⇡

2 -
shifted phase angles. This condition exhibits a natural weighting that is useful
in practice. The phase angle estimates are more reliable when the zenith angle is
large (i.e. when the degree of polarisation is high and so the signal to noise ratio
is high). When the zenith angle is large, the magnitude of the surface gradient
is large, meaning that disagreement with the estimated phase angle is penalised
more heavily than for a small zenith angle where the gradient magnitude is small.

The second linear constraint has two di↵erent forms for di↵use and specular
pixels. The di↵use constraint is obtained by combining the expressions for the
unpolarised intensity and the degree of polarisation. To do so, we take a ratio
between (11) and (7) which cancels the nonlinear normalisation factor:

iun(u)

f(⇢(u), ⌘)
= �p(u)s

x

� q(u)s
y

+ s

z

, (15)

yielding our second linear equation in the surface gradient. For specular pixels,
we express (12) in terms of the surface gradient as:

p(u) = �h

x

/h

z

and q(u) = �h

y

/h

z

. (16)
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3.2 Linear height recovery

The surface gradient in (2) can be approximated numerically from the discretised
surface height function using finite di↵erences. To reduce sensitivity to noise
and improve robustness, where possible we use a smoothed central di↵erence
approximation. Such an approximation is obtained by convolving the surface
height function with Sobel operators G

x

,G

y

2 R3⇥3: @
x

z ⇡ z ⇤G
x

and @

y

z ⇡
z ⇤G

y

. At the boundary of the image or the foreground mask, not all neighbours
may be available for a given pixel. In this case, we use unsmoothed central
di↵erences (where both horizontal or both vertical neighbours are available) or,
where only a single neighbour is available, single forward/backward di↵erences.

Substituting these finite di↵erences into (14), (15) and (16) therefore leads
to linear equations with between 3 and 8 unknown values of z (depending on
which combination of numerical gradient approximations are used). Of course,
the surface height function is unknown. So, we seek the surface height function
whose finite di↵erence gradients solve the system of linear equations over all
pixels. Due to noise, we do not expect an exact solution. Hence, for an image
with K foreground pixels, we can solve in a least squares sense the system of
2K linear equations in the K unknown height values. In order to resolve the
unknown constant of integration (i.e. applying an arbitrary o↵set to z does not
a↵ect its orthographic images), we add an additional linear equation to set the
height of one pixel to zero. We end up with the linear least squares problem
minz kAz � bk2, where A has 2K + 1 rows, K columns and is sparse (each
row has at most 8 non-zero values). This can be solved e�ciently. Note: this is
a system of linear equations in depth. It is not a partial di↵erential equation.
Hence, we do not require boundary conditions to be specified.

We also find it advantageous (though not essential) to include two priors on
the surface height: 1. Laplacian smoothness, 2. convexity. Both are expressed as
linear equations in the surface height. See supplementary material for details.

4 Illumination estimation from a polarisation image

The method described above enables linear depth recovery from a single po-
larisation image when the illumination direction is known. In this section, we
describe how to use the polarisation image to estimate illumination, prior to
depth estimation, so that the method above can be applied in an uncalibrated
scenario. First, we show that the problem of light source estimation is ambigu-
ous. Second, we derive a method to compute the light source direction (up to the
binary ambiguity) from ambiguous normals using the minimum possible number
of observations. Third, we extend this to an e�cient least squares optimisation
that uses the whole image and is applicable to noisy data. Finally, we relax the
lighting assumptions to allow more flexible 1st and 2nd order SH illumination.

We consider only di↵use pixels for illumination estimation, since specular
pixels are sparse and we wish to avoid estimating the parameters of a particular
assumed specular reflectance model. Hence, the unpolarised intensity is assumed
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Fig. 4: A polarisation image of a di↵use object enables uncalibrated surface reconstruction up to a
convex/concave ambiguity. Both interpretations are consistent with the polarisation image.

to follow a Lambertian model with uniform albedo, as in (11). For the true s,
iun(u) = n̄(u)T s _ iun(u) = (Tn̄(u))T s. Hence, a single pixel restricts the light
source to two planes.

4.1 Relationship to the Bas-relief ambiguity

For an image with K di↵use pixels, there are 2K possible disambiguations of the
polarisation normals. Suppose that we know the correct disambiguation of the
normals and that we stack them to form the matrix Ntrue 2 RK⇥3 and stack
the unpolarised intensities in the vector i = [iun(u1) . . . iun(uK

)]T . In this case,
the light source s that satisfies Ntrues = i is given by the pseudo-inverse:

s = N

+
truei. (17)

However, for any invertible 3⇥3 linear transform A 2 GL(3), it is also true that
NtrueA

�1
As = i, and so As is also a solution using the transformed normals

NtrueA
�1. However, the only such A where NtrueA

�1 is consistent with the po-
larisation image is A = T, i.e. where the azimuth angle of each normal is shifted
by ⇡. Hence, if s is a solution with normals Ntrue then Ts is also a solution with
normals NtrueT. Note that T is a generalised Bas-relief (GBR) transformation
[4] with parameters µ = 0, ⌫ = 0 and � = ±1, i.e. the binary convex/concave
ambiguity. Hence, from a polarisation image with unknown lighting, we will be
unable to distinguish the true normals and lighting from those transformed by
T. Since T is a GBR transformation, the transformed normals remain integrable
and correspond to the true surface negated in depth (see Fig. 4).

4.2 Minimal solutions

Suppose that N 2 RK⇥3 contains one of the 2K possible disambiguations of the
K surface normals, i.e. N

j

= n̄(u
j

) or N
j

= Tn̄(u
j

). If N is a valid disambigua-
tion, then (with no noise) we expect: NN

+
i = i. We can see in a straightforward

way that three pixels will be insu�cient to distinguish a valid from an invalid
disambiguation. When K = 3, N+ = N

�1 and so NN

+ = I and hence the
condition is satisfied by any combination of disambiguations. The reason for this
is that, apart from degenerate cases, any three planes will intersect at a point
so any combination of transformed or untransformed normals will allow an s to
be found that satisfies all three equations.
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However, the problem becomes well-posed for K > 3. The system of linear
equations must be consistent and have a unique solution. If some, but not all, of
the normals are transformed from their true direction then the system of equa-
tions will be inconsistent. By the Rouché–Capelli theorem [19], consistency and
uniqueness require rank(N) = rank ([N i]) = 3. So, we could try each possible
combination of disambiguated normals and check whether the rank condition is
satisfied. Note that we only need consider half of the possible disambiguations.
We can divide the 2K disambiguations into 2K�1 pairs di↵ering by a global
transformation and only need consider one of each of the pairs. So, for the min-
imal case of K = 4, we construct the 8 possible normal matrices N, with the
first row fixed to N1 = n̄(u1), and find the one satisfying the rank condition.
For this N we find s by (17) and the solution is either (N, s) or (NT,Ts).

4.3 Alternating optimisation

In practice, we expect the ambiguous normals and unpolarised intensities to be
noisy. Therefore, a least squares solution over all observed pixels is preferable.
Since the unknown illumination is only 3D and we have a polarisation observation
for every pixel, the problem is highly overconstrained. Following the combinato-
rial approach above, we could build all 2K possible systems of linear equations,
solve them in a least squares sense and take the one with minimal residual as
the solution. However, this is NP-hard and impractical for any non-trivial value
of K. Instead, we can write an optimisation problem to find s:

s

⇤ = argmin
s2R3

X

j2D
min

⇣
[n̄(u

j

) · s� iun(uj

)]2 , [Tn̄(u
j

) · s� iun(uj

)]2
⌘
. (18)

This is non-convex since the minimum of two convex functions is not convex
[20]. However, (18) can be e�ciently optimised using alternating assignment
and optimisation. In practice, we find that this almost always converges to the
global minimum even with a random initialisation. In the assignment step, given
an estimate for the light source at iteration t, s(t), we choose from each ambiguous
pair of normals the one that yields minimal error under illumination s

(t):

N

(t)
j

:=

(
n̄(u

j

) if
⇥
n̄(u

j

)·s(t)�iun(uj

)
⇤2

<

⇥
Tn̄(u

j

)·s(t)�iun(uj

)
⇤2

Tn̄(u
j

) otherwise
. (19)

At the optimisation step, we use the selected normals to compute the new light
source by solving the linear least squares system: s(t+1) := (N(t))+i. These two
steps are iterated to convergence. In all our experiments, this process converged
in fewer than 10 iterations. To resolve the ambiguity in our experimental results,
we always take the light source estimate that gives the maximal surface.

4.4 Extension to 1st and 2nd order spherical harmonic lighting

Using a first or second order SH di↵use lighting model [21,22], the binary ambi-
guity in the surface normal leads to a binary ambiguity in the SH basis vector
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(c)$Our$method$(b)$True$normals$ (d)$[2,7]$(a)$Input$

Convexity*errors*

(e)$[10]$

High*frequency*noise*Specular*fla9ening*

Fig. 5: Typical surface normal estimates (c-e) from noisy synthetic data (a). The inset sphere in (b)
shows how surface orientation is visualised as a colour.

at each pixel. Specifically, a first order SH lighting model introduces a constant

term: iun(u) = b4(u)T s4 with basis vector b4(u) =
⇥
n

x

(u) n

y

(u) n

z

(u) 1
⇤
T

.
With ambiguous normals, the basis vector is known up to a binary ambiguity:

b4(u) = b̄4(u) or b4(u) = T4b̄4(u) with b̄4(u) =
⇥
n̄

x

(u) n̄

y

(u) n̄

z

(u) 1
⇤
T

and
the transformation given by: T4 = diag(�1,�1, 1, 1). Solving for s4 is the same
problem as solving for a point source, leading to the same ambiguity. If s4 is
a solution with minimal residual then T4s4 is also an optimal solution and the
transformation of the normals corresponds to a GBR convex/concave transfor-
mation. Similarly, a second order SH lighting model: iun(u) = b9(u)T s9 with

basis vector b9 =
⇥
1 n

x

n

y

n

z

3n2
z

�1 n

x

n

y

n

x

n

z

n

y

n

z

n

2
x

�n

2
y

⇤
T

, can be
handled in exactly the same way with the appropriate transformation matrix
given by: T9 = diag(1,�1,�1, 1, 1, 1,�1,�1, 1). For shape estimation, we com-
pute the 4D or 9D lighting vector, subtract from the di↵use intensity the zeroth
and second order appearance contributions and then run the same algorithm as
for point source illumination using only the first order appearance.

5 Experimental results

We begin with a quantitative evaluation on synthetic data. We render images
of the Stanford bunny with Blinn-Phong reflectance under point source illumi-
nation (Fig. 5a). We simulate polarisation according to (3), (5) and (9) with
varying polariser angle, add Gaussian noise of standard deviation � and quan-
tise to 8 bits. We vary light source direction over ✓

l

2 {15�, 30�, 60�} and
↵

l

2 {0�, 90�, 180�, 270�}. We estimate a polarisation image for each (�, ✓
l

,↵

l

)
and use this as input. For comparison, we implemented the only previous meth-
ods applicable to a single polarisation image: 1. boundary propagation [2,7] and
2. Lambertian shading disambiguation [10]. The second method requires known
lighting and albedo. For both this and our method, we provide results with
ground truth lighting/albedo (superscript “gt”) and lighting/albedo estimated
using the method in Sect. 4.3 (superscript “est”). For the comparison methods,
we compute a depth map using least squares integration, as in [23]. For our
method, we compute surface normals using a bicubic fit to the estimated depth.

We show typical results in Fig. 5c-e and quantitative results in Tab. 1 (RMS
depth error and mean angular surface normal error averaged over ↵

l

and 100
repeats for each setting; best result for each setting emboldened). The boundary
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Fig. 6: Qualitative comparison on real world data. Light source direction = [2 0 7].

propagation method [2,7] assumes convexity, meaning that internal concavities
are incorrectly recovered. The Lambertian method [10] exhibits high frequency
noise since solutions are purely local. Both methods also contain errors in spec-
ular regions and propagate errors from normal estimation into the integrated
surface. Our solution is smoother and more stable in specular regions yet still
recovers fine surface detail. Note however that the simple constraint in (12)
encourages all specular normals to point in the same direction, leading to over-
flattening of specular regions. Quantitatively, our method o↵ers the best perfor-
mance across all settings. In many cases, the result with estimated lighting is
better than with ground truth. We believe that this is because it enables the
method to partially compensate for noise. In Tab. 2 we show the quantitative
accuracy of our lighting estimate. We use the same point source directions as
above. When the lighting is within 15� of the viewing direction, the error is less
than 1�. For order 1 and 2 SH lighting, we use the same order 1 components as
the point source directions and randomly generate the order 0 and 2 components.

In order to evaluate our method on real world images, we capture two datasets
using a Canon EOS-1D X with an Edmund Optics glass linear polarising filter.
The first dataset is captured in a dark room using a Lowel Prolight to approx-
imate a point source. We experiment with both known and unknown lighting.
For known lighting, the approximate position of the light source is measured
and to calibrate for unknown light source intensity and surface albedo, we use
the method in Sect. 4.3 to compute the length of the light source vector, fixing
its direction to the measured one. The second dataset is captured outdoors on
a sunny day using natural illumination. We use an order 1 SH lighting model.

We show a qualitative comparison between our method and the two reference
methods in Fig. 6 using known lighting (see supplementary material for more
comparative results). The comparison methods exhibit the same artefacts as on
synthetic data. Some of the noise in the normals is removed by the smoothing
e↵ect of surface integration but concave/convex errors in [2,7] grossly distort the
overall shape, while the surface details of the wings are lost by [10]. In Fig. 7
we show qualitative results of our method on a range of material types, under a
variety of known or estimated illumination conditions (both indoor point source
and outdoor uncontrolled). Note that the recovered surface of the angel remains
stable even with estimated illumination (compared to known illumination in Fig.
6). Note also that our method is able to recover the fine surface detail of the
skin of the lemon and orange under both point source and natural illumination.
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Table 1: Depth and surface normal estimation errors on synthetic data.
� = 0% � = 0.5% � = 1% � = 2%

✓l Method
Depth Normal Depth Normal Depth Normal Depth Normal
(pixels) (degrees) (pixels) (degrees) (pixels) (degrees) (pixels) (degrees)

15�

Oursgt 3.65 3.30 5.68 5.39 16.09 9.59 16.96 16.19

Oursest 3.75 3.36 5.60 5.35 15.77 9.44 16.80 16.01

[10]gt 11.46 4.43 51.78 8.07 173.89 13.37 92.73 22.78

[10]est 11.64 4.86 51.69 8.10 173.83 13.34 92.08 22.71
[2,7] 17.96 12.19 55.51 9.69 180.02 13.20 90.64 17.59

30�

Oursgt 3.67 4.68 15.42 7.00 10.20 10.06 16.84 16.14

Oursest 6.07 7.57 14.89 6.83 9.43 9.75 16.25 15.67

[10]gt 14.22 6.00 780.40 8.69 203.68 13.19 286.65 21.29

[10]est 16.34 10.90 780.55 9.21 203.76 13.97 286.15 22.23
[2,7] 20.68 15.96 798.36 15.90 208.59 18.92 286.51 25.80

60�

Oursgt 7.57 11.05 13.70 14.22 67.62 17.81 21.62 23.25

Oursest 12.49 13.91 12.06 14.89 76.82 19.22 20.94 24.96

[10]gt 17.50 14.83 1355.47 20.88 7028.37 26.68 940.74 34.30

[10]est 20.90 20.82 1356.00 24.37 7014.33 30.12 936.88 37.53
[2,7] 22.80 23.74 1376.83 30.25 6468.54 35.32 956.13 41.13

Table 2: Quantitative light source estimation results on synthetic data.

✓l
Point source err = arccos(s · sest) Order 1 SH err = ks � sestk Order 2 SH err = ks � sestk
�=0% �=0.5% �=1% �=2% �=0% �=0.5% �=1% �=2% �=0% �=0.5% �=1% �=2%

15� 0.045� 0.069� 0.20� 0.56� 0.0040 0.0040 0.0031 0.0041 0.0007 0.0013 0.0024 0.0035

30� 0.084� 0.33� 0.88� 2.42� 0.0046 0.0047 0.0059 0.0041 0.0006 0.0036 0.0025 0.013

60� 0.81� 3.44� 7.83� 15.97� 0.0062 0.0084 0.0060 0.0060 0.0012 0.0025 0.0091 0.0052

6 Conclusions

We have presented the first SfP technique in which polarisation constraints are
expressed directly in terms of surface depth. Moreover, through careful construc-
tion of these equations, we ensure that they are linear and so depth estimation
is simply a linear least squares problem. The SfP cue is often described as being
locally ambiguous. We have shown that, in fact, even with unknown lighting
the di↵use unpolarised intensity image restricts the uncertainty to a global con-
vex/concave ambiguity. Our method is practically useful, enabling monocular,
passive depth estimation even in outdoor lighting. For reproducibility, we make a
full implementation of our method and the two comparison methods available1.

In future, we would like to relax the assumptions in Sect. 2. From a practical
perspective, the most useful would be to allow spatially-varying albedo. Rather
than assuming that pixels are specular or di↵use dominant, we would also like to
allow mixtures of the two polarisation models and to exploit specular shading.
To do so would require an assumption of a specular BRDF model. An alternative
would be to fit a data-driven BRDF model [24] directly to the ambiguous polar-
isation normals, potentially allowing single shot BRDF and shape estimation.
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Fig. 7: Qualitative results on a variety of material types. The first three rows show results captured
in dark room conditions with a point light source. The two panels in the final row show results
in outdoor, uncontrolled illumination. Depth maps are encoded as brighter = closer. The first row
shows a result with known lighting direction, all others are estimated.
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