Supplementary material to:
Linear depth estimation from an uncalibrated,
monocular polarisation image

William A. P. Smith!, Ravi Ramamoorthi? and Silvia Tozza?

'University of York 2UC San Diego 3Sapienza - Universita di Roma
william.smith@york.ac.uk ravir@cs.ucsd.edu tozza@mat.uniromal.it

In this supplementary document, we provide additional implementation de-
tails and experimental results. Specifically, we provide additional details regard-
ing the implementation of our method (Sections 1, 2, 3 and 4), details on how
we implemented the two comparison methods (Sections 5 and 6) and additional
comparative experimental results (Section 7).

1 Specular sinusoid fitting

Estimating degree of specular polarisation requires an additional pre-processing
step. Prior to fitting the model for specular degree of polarisation, we must first
subtract the assumed diffuse component from the overall intensity. Our assump-
tion is that for specular pixels the diffuse polarisation is insignificant compared
to the specular polarisation. So, to correctly estimate the degree of polarisation,
it should be the height of the sinusoid as a fraction of the unpolarised specular
intensity rather than the combined diffuse/specular intensity. Specifically, we
assume that

if;;ec(u) _ idiﬁ(u) I Imax(ll) + Imin(ll) i Imax(u) - Imin(ll) COS[Qﬁj _ 2¢(u)]

2 2
(1)
Since we assume that the surface normal for specular pixels points approximately
in the halfway direction, i.e.

ueS=n(u)~h, (2)

we can compute an assumed diffuse intensity as:
i (u) = h s, (3)
using the estimated or known light source vector s. This quantity is subtracted

from the captured polarimetric images prior to sinusoid fitting for specular pixels
only.

2 Surface Priors

For robust performance on real world data, we find it advantageous (though not
essential) to include two priors on the surface height: 1. a Laplacian smoothness
term, 2. a convexity prior. Both are expressed as linear equations in the surface
height.

2 W. A. P. Smith, R. Ramamoorthi and S. Tozza

(i

IR
0

w w =0.1

smooth smooth

i

Fig. 1: Estimated depth maps without (left) and with (right) Laplacian smoothness prior. The inset
zoomed region shows the “checkerboard” effect that occurs with no smoothing. Sensitivity to noise
is also reduced.

2.1 Laplacian smoothness

The first prior is a Laplacian smoothness term. This adds a smoothness penalty,
€smooth, tO the overall objective function:

2

Esmooth = Wsmooth Z Z(u) *(1-41) (4)
ucerF 010

where Wgmeotn Weights the influence of the prior. This prior encourages a pixel
to have a depth close to the average of its neighbours. It is minimised by locally
planar regions, so can lead to oversmoothing of curved regions, but has the
advantage of being linear in the surface gradient. We use a value of wgmootn = 0.1
in all of our experiments. The main benefit of this prior is to reduce noise caused
by the independence of the gradient estimates between adjacent pixels caused
by the smoothed central difference approximation. This effect is shown in Figure

m

2.2 Convexity

The second prior (applicable only to objects with a foreground mask) is a convex-
ity prior that encourages the azimuth angle of the surface normal to align with
the azimuth of outward facing boundary normals. This is helpful for data that
is noisy close to the occluding boundary, for example when some background is
included in the image due to an inaccurate foreground mask.

We compute unit vectors in the image plane that are normal to the boundary
and outward facing. To propagate these vectors into the interior, we erode the
foreground mask and repeat this process until all pixels have been assigned an
outward facing vector. Next, we smooth this vector field using a 9 by 9 window

Supplementary material to: Linear depth from polarisation 3

o

(a) Azimuth from boundary) Per-pixel weight

Fig. 2: Azimuth angles and welghtb for convexity prior.

approximating a Gaussian kernel with a standard deviation of 2. Finally, we
convert these vectors to azimuth angles, a;(u).

Now, to measure the deviation between ay(u) and the azimuth angle of the
estimated surface normal, we construct a surface normal vector n,(u) using
ap(u) and the zenith angle estimated by polarisation, #(u) (using Equation 6 or
9 in the paper for diffuse/specular pixels respectively):

n,(u) = [sin ag(u)sinf(u) cosap(u)sinf(u) cosd(u)]’. (5)

We wish to encourage the boundary-propagated surface normal n,(u) and the
estimated surface normal n(u) to point in the same direction. To express this
in terms of the surface gradient, we wish the gradient according to n,(u) to be
close to that according to n(u), i.e.

sin ap(u) sin 6(u)
cos f(u)

cos ap(u) sin O(u)
cosf(u)

p(w) = and q(u) =

(6)

For numerical stability, we multiply both sides of these equations by cosf(u)
(this avoids the magnitude of the equation becoming very large when 6(u) is
close to 7). Finally, we weight this prior such that it has high influence close
to the boundary but the weight falls off rapidly as distance to the boundary
increases. The per-pixel weights are defined as follows:

Weomvexity (1) = ([maxve}' dy(v)] — db(u)>m 7 (7)

maxyer dp(Vv)

where dp(u) is the Euclidean distance from u to the boundary pixel closest to

u. The parameter m determines how quickly the weight reduces with distance

from the boundary. We use m = 5 in our experiments. In Figure [2] we show the

per-pixel weight and boundary azimuth angle for the Stanford bunny data.
The convexity prior is expressed via the following objective:

Econvexity = Z Weonvexity (W)[(p(1) cos () — sin ay(u) sin O(u))* +
uerF

(q(u) cos B(u) — cos ap(u) sinB(u))?*]. (8)

4 W. A. P. Smith, R. Ramamoorthi and S. Tozza

(a) Estimated surface with convexity prior (b) Estimated surface without convexity prior

Fig. 3: Effect of the convexity prior.

We show surface reconstruction results in Figure 3| with and without this prior
to demonstrate its effect.

Rather than assuming convexity, an alternative that could be explored in
future work would be to encourage the normals to be close to the disambiguation
chosen by the light source estimation. This would give additional weight to both
the shading cue and polarisation measurements and avoid an assumption that
is invalid for non-convex regions.

2.3 Running time

The smoothness and convexity priors add up to 3K additional equations to the
least squares system in total. However, even with this larger system of equations,
building and solving the system takes < 2 seconds in unoptimised Matlab code
for the results shown in the paper. The example shown in Figure [3| (43,308
foreground pixels, 215,848 linear equations and 1,581,700 non-zero entries in the
least squares system matrix) took 1 second to build and solve the linear system.

3 Specular labelling

In order to label specular dominant pixels, we combine two very simple heuristics:
1. rank order position of unpolarised pixel intensity and 2. specular coefficient
in dichromatic model. We find that even without any tuning of parameters,
this is sufficient to obtain a specular mask that enables good performance on
real world data. However, a more sophisticated approach, that avoided manually
chosen thresholds or perhaps that exploited polarisation cues, would clearly be
a good target for future work.

The first heuristic simply computes the percentile of the unpolarised inten-
sity:

idx(u)

() = “ ©)

where idx(u) is the rank order of the unpolarised intensity when sorted in as-
cending order and K = |F| the number of foreground pixels.

The second heuristic is based on the dichromatic model [I]. This heuristic is
particularly effective when the object’s diffuse colour is different to the colour of

Supplementary material to: Linear depth from polarisation 5

(a) Input (b) h1 (c) ha (d)ues
Fig. 4: Specular labelling process: (a) colour input image, (b-c) heuristics, (d) labelling result.

the illumination. We begin by fitting a plane passing through the origin to the
distribution of RGB values for the image foreground. In this two dimensional
colour space, we then robustly fit the diffuse colour by maximising inliers when
a line passing through the origin is fitted to the data (cqix € R®) and finally
complete the skewed-T fit by robustly fitting the specular colour (cspec € R?) to
the remaining degree of freedom. Hence, a pixel’s colour can be expressed as a
weighted combination of these two basis vectors: i(u) ~ kq(u)cais + ks (1)Cspec-
The second heuristic is simply the specular coefficient:

ha(u) = ks(u). (10)

Finally, any pixel with a degree of polarisation larger than the maximum
possible diffuse degree of polarisation, pmax, must be a specular pixel.

The specular labelling is based on a logical AND of thresholds of the two
heuristics, OR’d with the comparison to the maximum diffuse degree of polari-
sation:

(hi(u) > t1 A ha(u) > t2) V (p(u) > pmax) = u € S. (11)

We use t; = 0.2 and t5 = 0.9 in our experiments. In Figurewe show an example
of the labelling procedure including the values of the two heuristics and the final
labelling result.

Note that, although we use colour here (and as input for both the synthetic
and real image experiments in the paper), we only use one colour channel for
illumination and surface height estimation. Colour provides a useful cue for spec-
ular labelling and may provide additional useful information for shape estima-
tion. However, for simplicity, we subsequently use only the colour channel with
highest average intensity over the foreground for shape and lighting estimation.

4 Finite difference gradient approximations

Having expressed the polarisation constraints as linear equations in the surface
gradient, we subsequently substitute in finite difference approximations to the
surface gradient in terms of the surface depth. This allows us to write a linear
system in terms of the unknown surface depth and solve for depth directly. In

6 W. A. P. Smith, R. Ramamoorthi and S. Tozza

the paper, we refer to using the Sobel operator. Here we provide more details on
this and specifically what version of the operator we use.

The central difference approximation to the first derivative in the horizontal
direction can be obtained by convolution with the kernel [—1 0 1] (assuming unit
spacing of the pixel grid). To reduce sensitivity to noise and improve robustness,
the depth values are first smoothed using a centre-weighted kernel approximating
a Gaussian. By associativity of the convolution operator we can pre-convolve
the finite difference and smoothing kernels leading to the Sobel operators. The
classical form of the Sobel operator uses a standard deviation for the Gaussian
kernel of 0.85. In our implementation, we use a standard deviation of 0.6, giving
the following kernels for computing the surface gradients in the horizontal and
vertical gradient respectively:

-101 1 1 4 1
6352%2*5 —404 ,8yzzz*ﬁ 0 0 0]. (12)
-101 -1-4-1

This gives a higher weight to the central row/column and slightly reduces the
smoothing effect. We found this made a very small, but not insignificant, im-
provement in performance.

5 Implementation of [23]

The first comparison method is due to Miyazaki et al. [2] and Atkinson and Han-
cock [3]. First, polarisation normals on the object boundary are disambiguated
by choosing the direction that is closest to the outward facing boundary normal.
Next, disambiguation is propagated inwards by processing pixels in decreas-
ing order of estimated zenith angle and choosing the disambiguation that leads
to the smoothest local neighbourhood when considering already-disambiguated
normals. We show our implementation of this second step in Figure[5] The only
unspecified aspect of the approach is the definition of smoothness used. In our
implementation, we define the smoother solution as the one that has smaller
mean angular deviation between the chosen normal and a 7 x 7 neighbourhood
around the pixel. One extra detail is that, in the presence of noise, it is possible
for a considered pixel to have no disambiguated normals in its neighbourhood.
Hence, in our implementation the pixel considered next is the unprocessed pixel
with largest zenith angle that also has at least one disambiguated pixel in its
neighbourhood.

6 Implementation of [4]

The second comparison method is due to Mahmoud et al. [4]. The idea is as fol-
lows. First, the ambiguous polarisation normals are computed using the diffuse
polarisation model, yielding two possible surface normals n and Tn. Second, the
degree of polarisation constraint is combined with a Lambertian shading con-
straint, yielding two further normals (we refer to these as the shading normals).

Supplementary material to: Linear depth from polarisation 7

e B N A

AR R R A R R R AR R WD W W®WWWNNNNNNNRNNNRES B RS s e e e
© W N0 RE WN RO © N0 ORI WN RO O 0N R RN RO OO RN O©

50

57
58
59
60
61
62

% Sort zenith angles of interior pixels into descending order
[*,idx]=sort (theta(interior),1, 'descend');

[col,row]l=meshgrid(l:cols,l:rows);
r = row(interior);
c = col(interior);

% At each iteration, we choose the unprocessed pixel with smallest zenith
% angle that has at least one neighbour
while “isempty(idx)

flag = false;

selected = 1;

% Consider pixels in ranked-theta order to find first one with at least

% one neighbour (over 7x7 neighbourhood)

while “flag

neighbourhood = [];

for i=-3:3
for j=-3:3
if (i7=0) || (j~=0)

if available_estimates (r(idx(selected))+i,
c(idx (selected))+j)
neighbourhood = [neighbourhood;
r(idx(selected))+i c(idx(selected))+jl;
end
end
end
end
if “isempty(neighbourhood)
% We need at least one neighbour to test smoothness
flag=true;
else
selected=selected+1;
end
end
% We now have a pixel with at least one neighbour
r=r(idx(selected));
c=c(idx(selected));
% Select the normals from the neighbourhood

Ns=[];
for i=1:size(neighbourhood,h1)
Ns = [Ns;
N(neighbourhood(i,1) ,neighbourhood(i,2),1)
N(neighbourhood (i,1) ,neighbourhood(i,2),2)
N(neighbourhood (i, 1) ,neighbourhood(i,2),3)];
end

% Compute which local solution has smaller mean angular deviation from
% its neighbours, our definition of smoothness
nl = [sin(phi(r,c))*sin(theta(r,c));
cos(phi(r,c))*sin(theta(r,c));
cos(theta(r,c))];
n2 = [sin(phi(r,c)+pi)*sin(theta(r,c));
cos(phi(r,c)+pi)*sin(theta(r,c));
cos(theta(r,c))];
% Select smoothest disambiguation and store chosen normal
if mean(acos(Ns#*n1))<mean (acos(Ns*n2))
N(r,c,:)=n1;
else
N(r,c,:)=n2;
end
available_estimates (r,c)=true;
idx(selected)=1[];
end

Fig. 5: Matlab implementation of boundary propagation [2l[3].

8 W. A. P. Smith, R. Ramamoorthi and S. Tozza

These two normals can be seen as the intersection of two cones whose axes are the
viewer and light source directions and whose opening angles are determined by
the degree of polarisation and unpolarised intensity respectively. With no noise,
one of the polarisation normals will coincide with one of the shading normals,
resolving the ambiguity. In the presence of noise, Mahmoud et al. [d] propose
finding the azimuth angle that minimises the difference to the azimuth angle
of the closest polarisation and shading normal. Put another way, we first find
the polarisation/shading normal pair that are closest together and then average
their azimuth angle.

In the original paper, this is expressed directly in terms of angles. However,
we found that the expression given in the paper always yields azimuth angles
in range 0...7, so we suspect there is an unwritten additional step to correctly
handle the quadrant in which the vectors lie. For this reason, we implemented
their method in terms of unit vectors rather than angles. A code snippet showing
our implementation of this method is shown in Figure 6] The intersection of the
two cones results in a quadratic equation whose two solutions are the two possible
shading normals (n1 and n2 in the code snippet).

7 Additional results

In Figures [7] and 8] we show results related to the objects reported in Figure
7 of the main paper for the two comparison methods (note that the results
are only for point source illumination since the comparison methods are not
designed for outdoor illumination). It is clear from these examples that the
comparison methods exhibit severe failures on real world images. The boundary
propagation method obtains reasonable results for simple, convex objects (e.g.
the lemon) although even here it is sensitive to specularities that cause noise. On
objects containing internal concavities (e.g. the lobster), the recovered surface
is highly distorted. On the other hand, the Lambertian disambiguation method
does better on diffuse objects (e.g. the lobster), even when they contain internal
concavities, but it is highly sensitive to noise, particularly on specular objects.
Noise in the normals leads to over flattening of the recovered surfaces.

References

1. Shafer, S.A.: Using color to separate reflection components. Color Research &
Application 10(4) (1985) 210-218

2. Miyazaki, D., Tan, R.T., Hara, K., Ikeuchi, K.: Polarization-based inverse rendering
from a single view. In: Proc. ICCV. (2003) 982-987

3. Atkinson, G.A., Hancock, E.R.: Recovery of surface orientation from diffuse polar-
ization. IEEE Trans. Image Process. 15(6) (2006) 1653-1664

4. Mahmoud, A.H., El-Melegy, M.T., Farag, A.A.: Direct method for shape recovery
from polarization and shading. In: Proc. ICIP. (2012) 1769-1772

Supplementary material to: Linear depth from polarisation

- RN - NS U C R

possible ambiguous polarisation normals for every pixel:

:,1)=sin(phi) .*sin(theta);

,2)=cos (phi) .*sin(theta);
,3)=cos (theta);
,1)=sin(phi+pi) .*sin(theta);
,2)=cos (phi+pi) .*sin(theta);

:,3)=cos(theta);

for row=1:size(theta,1)

end

for

end

col=1:size(theta,2)

% Compute two intersections between Lambertian cone

% and degree of polarisation cone

a = s(1);

b = s(2);

c = s(3)*xcos(theta(row,col))-i_un(row,col);

d = -sin(theta(row,col))"2;

nyl = -(bxc + a*(- d*a"2 - d*b"2 - c~2)"°(1/2))/(a"2 + b"2);
ny2 = -(b*xc - a*(- d*a”2 - d*b"2 - c~2)°(1/2))/(a"2 + b"2);
nxl = sqrt(sin(theta(row,col)) 2-ny1°2);

nx2 = -sqrt(sin(theta(row,col)) 2-nyl1~2);

% These are the two possible shading normals:

nl = [nxl1 nyl cos(theta(row,col))]l';

n2 = [nx2 ny2 cos(theta(row,col))]l"';
% Find which is closer to its closest polarisation normal:
nibest = max(dot(nl,squeeze(N1(row,col,:))),
dot (n1,squeeze (N2(row,col,:))));
n2best = max(dot(n2,squeeze (N1(row,col,:))),
dot (n2, squeeze (N2(row,col,:))));
if nlbest>n2best

na = nl;
else

na = n2;
end

% and take the polarisation normal closest to the chosen
% cone normal:
if dot(na,squeeze(N1(row,col,:)))>dot(na,squeeze(N2(row,col,:)))

nb = squeeze (N1(row,col,:));
else

nb = squeeze(N2(row,col,:));
end

% Finally, find the vector whose azimuth angle is halfway between
% the two chosen normals (averaging is done on vectors to avoid

% angle wrap around issues)

n = na+nb;

n(1:2) = n(1:2)./norm(n(1:2));

n(1:2) = n(1:2).*sin(theta(row,col));

n(3) = cos(theta(row,col));

N(row,col,:)=n;

Fig. 6: Matlab implementation of Mahmoud et al. [4].

10 W. A. P. Smith, R. Ramamoorthi and S. Tozza

Estimated
depth

Re-rendered surface, novel pose
-«
.

Estimated
normals

Re-rendered surface, novel pose

Estimated depth Estimated normals

Fig. 7: Additional qualitative results for [2I3].

Supplementary material to: Linear depth from polarisation

Estimated
depth

Estimated
normals

Re-rendered surface, novel pose

Estimated
depth
T

Estimated
normals

Re-rendered surface, novel pose

Re-rendered surface, novel pose

_il

Fig. 8: Additional qualitative results for Mahmoud et al. [4].

	Supplementary material to: Linear depth estimation from an uncalibrated, monocular polarisation image

