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ABSTRACT

We present a parts-based 3D Morphable Model (3DMM) of the full human head, with particular em-
phasis on modelling the complex shape of the ear as a flexible, high-resolution separate part. The 3D
ear model part undergoes an iterative process of refinement that employs data augmentation using a 2D
image dataset with landmarked ears. Evaluations using several performance metrics validate the train-
ing process and the resulting model. We make the new ear model and our reconstructed training dataset
publicly available. We merge the trained high-resolution 3DMM of the ear with a publicly-available
3DMM of the full head that has a much lower resolution in the ear regions. The resulting parts-based
3DMM provides more shape variation and more shape detail in the ears, and we demonstrate a higher
fidelity overall model fit to raw data.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The process of capturing knowledge about the shape and tex-
ture variation of an object class is termed statistical modelling.
One example of this is the 3D Morphable Model (3DMM)
(Blanz and Vetter, 1999), which is a vector space representa-
tion, where any convex combination of vectors of a training set
generates a valid example in this vector space. Trained 3DMMs
provide an encoding and prior distribution of shape and tex-
ture that can be used as a constraint in analysis problems, or
generatively in synthesis problems. We are particularly con-
cerned with modelling the human head, which has a wide vari-
ety of related applications, such as in affective computing (Gar-
rido et al., 2016), creative media (Saragih et al., 2011), bio-
metrics (An et al., 2018) and semantic explanation of images
(Tewari et al., 2017). In addition to the face, the shape of the
ear has long been recognised as a means of biometric identifica-
tion (Pflug and Busch, 2012; Abaza et al., 2013; Emeršič et al.,
2017b,a), and is particularly useful in certain head poses.

Recent literature shows that it is very difficult to capture the
detailed 3D structure of the ear when training 3DMMs associ-
ated with the face (Booth et al., 2018) or the full head (Dai et al.,
2017). Many of these approaches require morphing (Amberg
et al., 2007; Myronenko and Song, 2010) a pre-defined mesh
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Fig. 1. 3D morphable model of ear. The mean and the first five principal
components are shown at +3SD (top row) and -3SD (bottom row).

called a shape template over the whole face/head. Even if the
template has a detailed ear structure, the high frequency detail
of the fleshy folds is often badly fitted, due to the template mor-
phing optimisation being dominated by the much larger facial
and cranial regions. As a consequence, it is difficult to construct
a powerful statistical prior in the ear regions.

Here we are particularly concerned with how a 3DMM of the
full human head can be improved by replacing its relatively low
resolution and inflexible ear shape, with a high resolution and
flexible one. This requires us to solve the problems of: i. con-
structing a high-resolution 3DMM of the human ear in the ab-
sence of a suitable large 3D dataset; ii. replacing the ears on an
existing 3DMM of the full head with the new ears; iii. treating
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the upgraded 3DMM of the full head as a parts-based model in
terms of fitting the model to raw data. Our model is a general
tool that can address a range of analysis and synthesis problems,
although these applications are outside the scope of this paper.

Our contributions are: i. a 2D-data-augmented 3DMM train-
ing pipeline; ii. the first publicly-available 3DMM of the ear
(shape channel only, not texture), as shown in Fig. 1, and
public- availability of the 2D-augmented 3D ear training data
(Dai et al., 2018); iii. a parts-based 3DMM merging process.

2. Training Data for the Ear Model

To train a 3DMM of the human ear, we would like to have
a large dataset of high quality, high resolution 3D ear images.
However, such data is very limited in its public availability and,
indeed, is very difficult to collect because the folded structure
of the ear creates significant self-occlusion. To our knowledge,
Zolfaghari et al. (2016) described the only construction of a
morphable model for external ear shapes based on a deforma-
tion framework that uses diffeomorphic metric mapping. They
release high quality 3D meshes of the ear for 10 subjects. Ob-
viously, this is insufficient to construct a 3DMM that is a good
population representation of shape. However, using this dataset,
with the left ear reflected to be compatible with the right ear
shape, we construct an initial approximate model of the ear.
The model has over 7K vertices (7111) and we employ a mod-
ified version of our morphing technique (Dai et al., 2017) to
build the model, which is an extension of Coherent Point Drift
(CPD) (Myronenko and Song, 2010). Note that we use a high
resolution ear mesh template for morphing that is made to be
compatible with the LYHM full head model (Dai et al., 2017)
at the joining boundary. This is detailed in Section 4.

Given the lack of 3D data, we aim to leverage a signifi-
cantly larger annotated 2D ear dataset by reconstructing it into
a 3D ear dataset, thereby boosting the initial approximate mor-
phable model in terms of its ability to represent larger popu-
lations. Helpfully, Zhou and Zaferiou (2017) made a 2D ear
image dataset available with 55 ground-truth landmarks over
600 images, partitioned into 500 training and 100 test images.

3. A 3DMM of the Ear

The process of 2D data-augmented 3DMM training is shown
in Fig. 2. There are three stages within the main iterative loop:
1) Initial 3DMM fit using landmarks; 2) Smoothing stage;
3) Landmark position refinement. These are described in the
following three subsections respectively. In Section 3.4 we de-
scribe alignment and statistical modelling. Finally, in Section
3.5, the iterative loop of 3DMM bootstrapping is described.

3.1. Initial 3DMM Fit

The Scaled Orthographic Projection (SOP) model assumes
that variation in depth over the object is small relative to the
mean distance from camera to object. Under this assumption,
the projected 2D position of a 3D point Xi = [xi, yi, zi]T ∈ R3,
given by SOP(Xi; R, t, s) ∈ R2 does not depend on the distance
of the point from the camera, but only on a uniform scale s

Fig. 2. Iterative model construction process.

given by the ratio of the focal length of the camera and the mean
distance from camera to object:

SOP(Xi; R,T, s) = sPo (RXi + T) (1)

where the 3D pose parameters are given by a rotation matrix
R ∈ SO(3) and 3D translation T ∈ R3 and Po is the orthographic
projection from 3D to 2D:

Po =

[
1 0 0
0 1 0

]
. (2)

Defining the 2D translation, t ∈ R2 in the image plane we have

SOP(Xi; R,T, s) = sPoRXi + t, t = sPoT. (3)

Initially, we fit a morphable model to M observed 2D posi-
tions xi = [ui, vi]T , (i = 1 . . . M) arising from the SOP projec-
tion of corresponding vertices in the morphable model. (This
is known from a single manual mark up of the mean mesh of
the initial approximate model). Without loss of generality, we
assume that the i-th 2D position corresponds to the i-th vertex
in the morphable model. The objective of fitting a morphable
model to these observations is to obtain the size (s), shape (b)
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and pose parameters (R, t) that minimise the reprojection error,
El, between observed and predicted 2D landmark positions:

El(s,b,R, t) =
1
M

M∑
i=1

||xi − sPoR(X̄i + Pib) − t||2, (4)

where Pi ∈ R3×n are the eigenvector elements associated with
the i-th landmark for a n-component model. (Note that the num-
ber of model components n associated with Pi and b starts small
and is gradually increased in our training process, as described
later). The problem in (4) is nonlinear least squares that can be
solved by various means. Here we use the trust region approach
(Coleman and Li, 1996) encapsulated in Matlab’s lsqnonlin
function. The initial landmark-based ear template fit is then re-
covered as:

X1 = X̄ + Pb (5)

where X1 = [x1, . . . , xN , y1, . . . , yN , z1, . . . , zN]T ∈ R3N repre-
sents the vertices of the noisy template fit from stage 1 over
N = 7, 111 vertices of the ear template.

3.2. Smoothing Stage
The 3DMM fitting to a 2D image with landmarks is over-

fitted, appearing as surface noise, see Fig. 3 (2). To overcome
this we employ a smoothing stage that is composed of two sub-
stages. Firstly, we employ the mean of the initial 3DMM, see
Fig. 3 (1), as a template, and we deform it using the Coherent
Point Drift (CPD) algorithm (Myronenko and Song, 2010) ap-
plied with a non-rigid deformation model. The motivation is
that the deformed template is able to preserve the same shape,
the same number of vertices and also the same triangulation
relationship as the over-fitted data, while it can overcome the
noise due to over-fitting. Here CPD works well because there
is a known one-to-one correspondence between the N vertices
on the template and the N vertices on the target.

Secondly, to improve the fit, we implement a projection to-
wards corresponding points that is regularised by the template
shape-preserving Laplace-Beltrami (LB) operator (Sorkine and
Alexa, 2007). This is achieved by solving the linear system:[

λI3 ⊗ LXCPD

I3N

]
X2 =

[
λLXCPD XCPD

X1

]
(6)

for improved vertex positions X2, where XCPD =

CPD(Xtemplate,X1) is the CPD deformed template. We
use IN to denote the N × N identity matrix, ⊗ is the Kronecker
product and, for an N vertex mesh X, LX ∈ RN×N denotes
the cotangent Laplacian approximation to the LB operator
computed from a mesh with vertices X. The parameter λ
weights the relative influence of the position and shape regular-
isation constraints, effectively determining the template shape
‘stiffness’ of the process. As λ → 0 (reducing shape stiffness)
the projected shape in X2 tends towards the original shape X1.
The much smoother outcome X2 is shown in Fig. 3 (3).

3.3. Landmark Position Refinement
The locations of the fitted landmarks after template deforma-

tion are not precise and so we invoke an additional mesh manip-
ulation stage to improve this. Given the 2D landmarks stored in

Fig. 3. Left, the 55 landmarks on the ear and their semantic annotations
(Zhou and Zaferiou, 2017). Deformation: (1) mean ear template, (2) noisy
fit (X1), (3) smoothed fit (X2).

the matrix x = [u1, v1, . . . , uM , vM]T ∈ R2M , we define the selec-
tion matrices S ∈ [0, 1]3M×3N that select the M vertices which
are the correspondences of the 2D landmarks. We the solve the
following linear system for the stage 3 output X3 ∈ R3N :[

λI3 ⊗ LX2

G(M)S

]
X3 =

[
λI3 ⊗ LX2 X2

x

]
(7)

where G(M) ∈ R2M×3M projects the 3D landmarks to 2D:

G(M) =

[
IM ⊗

[
1
0

]
IM ⊗

[
0
1

]
02M×M

]
. (8)

3.4. Similarity Alignment and Statistical Modelling
The collection of 500 deformed training meshes are sub-

jected to Generalised Procrustes Analysis (GPA) (Gower, 1975)
to remove similarity effects (rotation, translation, scale), leav-
ing only shape information. Note that scale cannot be included
as we have no notion of scale within the 2D image dataset,
also scale-normalised shapes have a better alignment in a least-
squares sense. The aligned meshes are then subject to Principal
Component Analysis (PCA), generating a 3DMM as a linear
basis of shapes.

3.5. 3DMM Bootstrapping
Our 2D-augmented 3DMM training process is iterative, in

that we rebuild the 3DMM and reapply it to the training dataset
for an improved fitting, generating an improved 3DMM at each
iteration. This approximate-to-accurate iterative system encap-
sulates each of the three stages in Sec. 3.1 to Sec. 3.3 within
each iteration, see Fig. 2. We increase flexibility relative to the
previous iteration, as follows: 1) we increase the number of
the shape components in Sec. 3.1 to give the algorithm more
variance to do the fitting; 2) we decrease λ in Sec. 3.3 to ma-
nipulate the projection of the landmarks in Xedit towards the 2D
landmarks position. 3DMM fitting and mesh manipulation are
potentially fragile processes when the 3DMM is approximate,
thus we push the algorithm carefully, step-by-step, in this itera-
tive fashion. The resulting model is illustrated in Fig. 1.

4. Merging 3D Morphable Models

We aim to merge our new flexible, high-resolution 3D ear
model with the Liverpool-York Head Model (LYHM) (Dai
et al., 2017), replacing its relatively low-resolution and rela-
tively inflexible ears. The immediate problem is compatibil-
ity of the connecting boundary between the high-resolution ear



4

Original template                                Joint template

Fig. 4. Original template (left), joint template (centre), and joint template
split into separate parts with a common boundary (shown in red)

mesh and the LYHM mesh with its ears removed. This is solved
by generating a joint mesh template with a shared boundary,
described in Section 4.1, which is then partitioned into ear and
no-ear head template parts. Model-part sampling, or fitting, is
followed by a three-stage alignment and merging of the con-
stituent parts, described in Section 4.2. Finally in Section 4.3,
we briefly outline the parts-based model .

4.1. Joint Template

We use the approach of Schmidt and Singh (2010) to blend
the high resolution ear template with the head template to create
our joint template. We cut off the high resolution ear from the
joint template we use this template to construct the 3DMM of
the ear. The connection relation between the two separate parts
is known from the joint template, see Fig. 4, and so we can use
this to merge the two separate morphable models.

In Fig. 4, the red points represent the shared vertices for the
high resolution ear X′e and the rest of the head X∗h−e. To merge
the two models, we require:

S′bX′e = S∗bX∗h−e (9)

where S′b selects the boundary vertices on the high resolution
3D ear and S∗b selects the boundary vertices on the no-ear head.

4.2. Merging model parts

The merging of the model parts requires: i. rigid align-
ment, ii. ARAP mesh manipulation (Sorkine and Alexa, 2007),
iii. patch smoothing. The basic idea is shown in Fig. 5. Note
that, if we omit the central mesh manipulation stage, we end up
with an undesirable bump. Each stage is now described.

Rigid alignment. We begin by rigidly aligning the high reso-
lution 3D ear sample X′e to the low resolution 3D ear X∗e on
the LYHM head mesh sample X∗. This can be solved by nor-
malising the scale of the high-resolution ear to that of the low-
resolution ear, and then using ICP (Besl and McKay, 1992).

Rigid alignment Mesh manipulation

Smooth patch

bump

Fig. 5. The merging flowchart includes two stages: 1) rigid alignment; 2)
mesh manipulation. If the output of the rigid alignment undergoes a patch
smoothing operation only, it suffers from a discontinuity problem, ending
up with a bump, shown in the lower three views. Our mesh manipulation
overcomes this, as shown in the top-right three views.

Mesh Boundary Manipulation. We manipulate the boundary
on X′e towards the boundary on X∗e and the rest of X′e is moved
As Rigid As Possible (ARAP) (Sorkine and Alexa, 2007). Given
a refined high resolution 3D ear mesh, whose vertices are stored
in the matrix X′refined ∈ R

p×3. This can be written as:[
λLX′e

S′b

]
X′refined =

[
λLX′e X′e
S∗bX∗h−e

]
(10)

where X′refined is the refined ear position that we wish to solve
for. The parameter λ weights the relative influence of the posi-
tion and regularisation constraints, effectively determining the
‘stiffness’ of the mesh manipulation. As λ → ∞, the ear part
stays in its original position. As λ→ 0, the boundary on the ear
part is moved onto its target positions.

Patch smoothing. After mesh manipulation, small artefacts can
be removed by a patch smoothing technique proposed by Des-
brun et al. (1999), which employed an implicit integration
method along with a scale-dependent Laplacian operator and
a robust curvature flow operator to portray a smooth surface.

4.3. Parts-based morphable model

Given a selection matrix S∗h-e that selects the no-ear head part
X∗h−e on the a head sample X∗, which is generated by the head
model, a new instance X′ generated by the merged model can
also be represented as X′ = [X′refined; S∗h-eX∗]. X′refined can be
solved from a linear system and S∗h-eX∗ can obtained from the
head model linearly. So the parts-based morphable model is
still a linear model, which facilities its application in 3DMM
fitting to 2D and 3D images. Note that our high resolution ear
model is a right ear and we use a reflection to fit a left ear.

5. Ear Modelling and Fitting Evaluation

We used the training method described in Section 3 to build
a 3DMM of the ear using 500 training images (Zhou and Zafe-
riou, 2017). Section 5.1 qualitatively illustrates model fitting
performance over a wide range of head poses. In Section 5.2,
we validate the complexity of our training process in an ablation
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(1)                                                        (2)                                                          (3)

Fig. 6. Results of each training step, with ground truth landmarks shown as
red dots and fitted landmarks as blue circles (best viewed on high zoom):
1) 3DMM overfitted to 2D landmarks; 2) smoothing process using mesh
deformation; 3) LB-regularised mesh manipulation to refine the landmark
positions.

Fig. 7. Model fitting for augmentation: First row - original raw images,
with the model’s 3D landmarks (blue circles) projected towards their 2D
counterparts (red dots). Second row - augmented 3D data with per-vertex
texture mapped over the model’s surface, and rendered in a canonical view.
Note that the first two columns are the same person.

study i.e. how does omitting some module, eg data augmenta-
tion, affect performance. The relative performance of the final
models in terms of compactness, generalisation and specificity
(Styner et al., 2003) is presented in Section 5.3. (Obviously, we
would like to test our model against other ear models but there
is no public 3DMM of the ear available for direct comparison.)
We compare the proposed 3DMM merging method with other
methods in Section 5.4. Finally, visualisations of the merged
3DMMs are presented in Section 5.5.

5.1. Qualitative Evaluation of Model Fitting
We illustrate the outcome of each training step in Fig. 6. The

landmark positions of the fitted results get closer and closer to
the ground truth manual landmarks. There is obvious over-
fitting to the 2D landmarks in the first stage. The smoothing
step via template deformation removes the noise, but it still
keeps the same landmark positions as the first step. The out-
come of final step (LB mesh manipulation) has refined land-
mark positions that are almost the same as the ground-truth, yet
with a smooth ear shape.

For illustration of the accuracy of the ear shape, we rigidly
align the 3D ear shape to the 2D landmarks on the 2D image.

Fig. 8. Mean landmark distance error for four system variants: (1) Land-
mark error distribution, (2) Fitting consistency distribution.

We then sample the image intensities onto the vertices of the
model, normalise to a canonical pose and render. As can be
seen in Fig. 7 across widely different head poses, the textured
mesh appears correct under rotation and the complete ear tex-
ture (with no background) is sampled onto the mesh. Note that
we do not build a statistical texture model - we show sampled
textures simply for visualisation.

5.2. Ablation Study
Here, the 3DMM training variants include: i) the proposed

3DMM training method, using several bootstrapping iterations,
and 500 2D training images, ii) the proposed method without
any bootstrapping iterations (i.e. one pass of the three stages
in Sec. 3) and 500 2D training images, iii) the initial 20-image
3DMM passed through the three steps in Sec. 3, with no 2D
landmarked data augmentation (Initial-v1 method) and iv) the
initial approximate 3DMM with just 3DMM fitting, i.e. no tem-
plate morphing or mesh manipulation stages, and no 2D data
augmentation (Initial-v2 method). For all four methods, we use
two metrics: landmark error and fitting consistency to evaluate
the performance quantitatively.

Landmark error is the average landmark distance error be-
tween the projected 3D landmarks and the 2D landmarks.
Fig. 8(1) shows that the proposed method has the lowest land-
mark error, which is below 1mm, and that both data augmenta-
tion and bootstrapping (iterative model improvement) have sig-
nificant beneficial effects.

Fitting consistency can be measured as the dataset contains
multiple images of the same person, as shown in the first two
columns of Fig. 7. First we fit the 3D model to the first im-
age of a pair, thus fixing the 3D model shape. Then, without
changing the model shape, we project it into the second image
and measure the mean landmark error relative to the manual 2D
landmarks. We compensate for differences in scale between the
two images in the fitting process. As shown is Fig. 8(2), the pro-
posed method has the lowest distance error, which implies that
the fitting from the proposed method is more consistent with
other images of the same person.

5.3. Compactness, Generalisation and Specificity
For quantitative model evaluation, we employ the three met-

rics proposed by Styner et al. (2003) namely: compactness,
generalisation and specificity. Such metrics require that the
compared models should have the same number of model com-
ponents. In this context, we compare the proposed method and
the proposed method without bootstrapping.
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Fig. 9. Model evaluation: (1) Compactness, (2) Generalisation, (3) Speci-
ficity.

Mean

+3SDs

-3SDs

Fig. 10. The first four modes of high resolution 3DMM of ear merged into
a mean head from LYHM.

The compactness of the model describes the number of pa-
rameters required to express some fraction of the variance in the
training set, fewer is better. As can be from Fig. 9, the proposed
method without bootstrapping has better compactness than the
proposed method when < 25 principal components are used.
When >25 principal components are used, the compactness is
similar. The proposed method has the lower generalisation er-
ror, which implies that proposed method has the better perfor-
mance in describing unseen examples. The proposed method
has the lower distance error in the specificity metric, which im-
plies that the proposed method is better at generating instances
close to real data.

5.4. Comparison of Ear Merging

We compare the proposed ear merging method with mesh
smoothing (Desbrun et al., 1999) after ear alignment and Lapla-
cian mesh manipulation (Sorkine et al., 2004). As shown in
Fig. 12 (2), with ear alignment, the high resolution ear mesh
is rigidly transformed to the right position. If we use mesh
smoothing directly after ear alignment, the joint area ends up
with undesirable bumps which is presented in Fig. 12 (3).
Laplacian mesh manipulation is based on the Laplacian to do

Mean

+3SDs

-3SDs

Fig. 11. The first four modes of high resolution 3DMM of ear merged into
the first four modes of head model.(For illustration only, please note that
the model parts are independent.)

(1)                                         (2)                                           (3)

(4)                                          (5)                                         

Fig. 12. Comparison of Ear Merging: (1) original head mesh; (2) ear align-
ment; (3) mesh smoothing after ear alignment; (4) Laplacian mesh manip-
ulation; (5) proposed. Best viewed on zoom.

interactive free-form deformation. As can be seen from Fig. 12
(4), Laplacian mesh manipulation presents a non-rigid defor-
mation in ear shape. However, this changes the high resolution
ear shape, which is not desirable in this process. Fig. 12 (5)
demonstrates the the proposed method. It shows a smoothed
joint area between the ear part and face part. The ear shape is
the same as that after rigid alignment, which results from the As
Rigid As Possible property of LB mesh manipulation. Fig. 13
shows the ear merging results for different identities using the
proposed method.

5.5. Visualisation of the Merged Morphable Model
The merged morphable model is derived from merging the

proposed ear model with the LYHM head model (Dai et al.,
2017). Fig. 10 demonstrates the first 4 modes of high resolution
3DMM of ear merged into a mean head. In this case, the head
shape is fixed and the ear shape is varied. Fig. 11 presents the
first 4 modes of high resolution 3DMM of ear merged into the
first 4 modes of head model. Here, the head shape and ear shape
are both varied (although no correlation is implied). In order
to validate the improvement in 3DMM fitting to 2D images, we
use the landmark fitting algorithm of Zhou and Zaferiou (2017).
The ear landmarks are given, and we use the facial landmarking
system of Zhu and Ramanan (2012) for full head fitting. The
fitting results are shown in Fig. 14. It shows that the parts-based
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Fig. 13. Ear merging results: every pair of images includes one original
head mesh followed by the merged result.

Fig. 14. Fitting results of a single 3DMM (the LYHM, left) and the proposed
parts-based 3DMM, right.

morphable model improves the performance of 3DMM fitting
to 2D images when compared with a head model only. One can
clearly see that there is not much shape variation in the ear that
is generated by the head model only.

6. Conclusions

We proposed an iterative 3DMM training process using 2D
data augmentation to bootstrap a strong 3DMM of the human
ear from a weak one. Evaluation demonstrates that the method
lowers the landmark error and the fitted data is more consis-
tent within images of the same person. The bootstrapping strat-
egy improves the model performance in both generalisation and
specificity. The limitation is the requirement for manual 2D
landmarks on the 2D training data. We proposed a framework
of merging high resolution ear shape with a 3DMM of the head.
The merged morphable models provide significantly more ear
shape variation than models built by morphing a single full head
template. Our modelling and merging techniques can be gener-
alised to other shapes that require detailed modelling of specific
parts.
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