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Figure 1: Given a single RGB image, we perform depth estimation using the MegaDepth Network [Li and Snavely 2018c] and
inverse rendering using InverseRenderNet [ Yu and Smith 2019]. The geometry is then computed by merging depth and normal
estimations. Finally we texture triangulated meshes with albedo estimates and re-render the scene with novel lighting and

viewpoint.
ABSTRACT

In this paper we propose a method for estimating geometry, light-
ing and albedo from a single image of an uncontrolled outdoor
scene. To do so, we combine state-of-the-art deep learning based
methods for single image depth estimation and inverse rendering.
The depth estimate provides coarse geometry that is refined using
the inverse rendered surface normal estimates. Combined with the
inverse rendered albedo map, this provides a model that can be
used for novel view synthesis with both viewpoint and lighting
changes. We show that, on uncontrolled outdoor images, our ap-
proach yields geometry that is qualitatively superior to that of the
depth estimation network alone and that the resulting models can
be re-illuminated without artefacts.
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1 INTRODUCTION

Over the past 5 years there has been tremendous progress on classi-
cal low level vision problems. This has been made through the use
of image-to-image deep learning architectures that can be trained
end-to-end to predict pixel-wise quantities. Two specific examples
include depth estimation and inverse rendering.

Depth estimation from a single image is usually learnt in a su-
pervised fashion, where the training examples come from a depth
sensor [Vasiljevic et al. 2019] or multiview stereo reconstructions
from image collections [Li and Snavely 2018c]. These methods are
now capable of providing robust performance on real world images
and the recovered depth often correctly estimates ordinal relation-
ships between objects and components within a scene. By texture-
mapping the depth map with the original image it is possible to
synthesise new images with novel viewpoint. However, the depth
maps estimated by these approaches do not capture finescale local
detail and they do not provide any reflectance or lighting estimates.
So, the output cannot be used for rendering novel illumination
conditions, i.e. for relighting.

In a different direction, inverse rendering (or intrinsic image
decomposition) provides a decomposition of the image into shading
and reflectance, perhaps with shading further decomposed into
a normal map and lighting estimate. Here, the challenge is that
no existing method can provide training examples for real world
scenes since inverse rendering in the wild is still an open problem.
For this reason, state-of-the-art methods use self-supervision [Yu
and Smith 2019]. Estimated surface normal and albedo maps are
sufficient for relighting and often capture finescale, high frequency
shape details. However, with no absolute geometric information,
viewpoint cannot be edited and cast shadows cannot be predicted.
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In this paper, we seek to combine the advantages of these two
divergent strands of research. Using state of the art deep CNNs
for each task, we merge the coarse depth map and high quality
normal map yielding a high quality geometric model. Combined
with the estimated albedo map, this provides a textured, relightable
3D model that can be used for novel view synthesis.

2 RELATED WORK

Deep depth prediction. Direct estimation of shape alone using
deep neural networks has attracted a lot of attention. Eigen and
Fergus [2015]; Eigen et al. [2014] were the first to apply deep learn-
ing in this context. Subsequently, performance gains were obtained
using improved architectures [Laina et al. 2016], post-processing
with classical CRF-based methods [Liu et al. 2015; Wang et al. 2015;
Xu et al. 2017] and using ordinal relationships for objects within
the scenes [Chen et al. 2016; Fu et al. 2018; Li and Snavely 2018c].
Zheng et al. [2018] use synthetic images for training but improve
generalisation using a synthetic-to-real transform GAN. However,
all of this work requires supervision by ground truth depth. An
alternative branch of methods explore using self-supervision from
augmented data. For example, binocular stereo pairs can provide a
supervisory signal through consistency of cross projected images
[Garg et al. 2016; Godard et al. 2017; Kendall et al. 2017]. Alter-
natively, video data can provide a similar source of supervision
[Vijayanarasimhan et al. 2017; Wang et al. 2018; Zhou et al. 2017].
Some of other work built from specific ways were proposed recently.
Tulsiani et al. [2017] use multiview supervision in a ray tracing
network. While all these methods take single image input, Ji et al.
[2017] tackle the MVS problem itself using deep learning.

Deep intrinsic image decomposition. Intrinsic image decomposi-
tion is a partial step towards inverse rendering. It decomposes an
image into reflectance (albedo) and shading but does not separate
shading into shape and illumination. Even so, the lack of ground
truth training data makes this a hard problem to solve with deep
learning. Recent work either uses synthetic training data and super-
vised learning [Bi et al. 2018; Fan et al. 2018; Han et al. 2018; Lettry
et al. 2018; Narihira et al. 2015] or self-supervision/unsupervised
learning. Very recently, Li and Snavely [2018b] used uncontrolled
time-lapse images allowing them to combine an image reconstruc-
tion loss with reflectance consistency between frames. This work
was further extended using photorealistic, synthetic training data
[Li and Snavely 2018a]. Ma et al. [2018] also trained on time-lapse
sequences and introduced a new gradient constraint which encour-
age better explanations for sharp changes caused by shading or
reflectance. Baslamisli et al. [2018] applied a similar gradient con-
straint while they used supervised training. Shelhamer et al. [2015]
propose a hybrid approach where a CNN estimates a depth map
which is used to constrain a classical optimisation-based intrinsic
image estimation.

Deep inverse rendering. To date, this topic has not received much
attention. One line of work simplifies the problem by restricting to
a single object class, e.g. faces [Tewari et al. 2017], meaning that a
statistical face model can constrain the geometry and reflectance
estimates. This enables entirely self-supervised training. Shu et al.
[2017] extend this idea with an adversarial loss. Sengupta et al.
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[2017] on the other hand, initialise with supervised training on
synthetic data, and fine-tuned their network in an unsupervised
fashion on real images. Aittala et al. [2016] restrict geometry to
almost planar objects and lighting to a flash in the viewing direc-
tion under which assumptions they can obtain impressive results.
Kanamori and Endo [2018] focus on human bodies and infer not
only geometry and reflectance but also estimate light transport so
that occlusion can be modelled. More general settings have been
considered including natural illumination [Li et al. 2017]. Kulkarni
et al. [2015] show how to learn latent variables that correspond to
extrinsic parameters allowing image manipulation. The only prior
work we are aware of that tackles the full inverse rendering prob-
lem requires direct supervision [Janner et al. 2017; Li et al. 2018;
Liu et al. 2017]. Hence, it is not applicable to scene-level inverse
rendering, only objects, and relies on synthetic data for training,
limiting the ability of the network to generalise to real images.
This drawback was addressed by InverseRenderNet [Yu and Smith
2019] which uses uncontrolled outdoor images for training. The key
insight is to apply multiview stereo image collections with wide
illumination variations and to use the estimated geometry to cross
project images between views, essentially simulating having fixed
viewpoint/varying lighting images. In addition, they proposed to
estimate only albedo and normals and infer lighting directly by
solving in a least squares sense, restricted to statistical subspace of
natural illumination.

Merging depth and normals. Different shape estimation tech-
niques deliver shape in different representations. For example, pho-
tometric methods naturally estimate surface orientation and hence
deliver a surface normal map. Stereo methods directly compute
scene depth and so deliver a depth map. Moreover, these tech-
niques often have complimentary strengths and weaknesses, for
example photometric methods often recover finescale detail but
contain low frequency bias whereas multiview techniques better
capture gross structure but contain high frequency noise. For this
reason, there has been interest in techniques that can merge posi-
tion and surface normal information. Nehab et al. [2005] proposed
an efficient method based on linear least squares that can work
with both depth maps and meshes. They also proposed a low pass
correction procedure, similar to Zivanov et al. [2009] who pose
the merging process as a nonlinear optimisation problem. These
approaches were extended to multiple viewpoints by Berkiten et al.
[2014] who also avoid the linearisation assumptions, though at the
cost of an optimisation problem of increased complexity. In deep
depth prediction, the idea of separately estimating both depth and
normals within the same network has been considered [Eigen and
Fergus 2015]. Here, parts of the network for predicting the two
representations are shared but the geometric relationship between
them is never explicitly enforced.

3 OVERVIEW

An overview of our approach is shown in Figure 2. We use a state-of-
the-art network for single image depth estimation (MegaDepth [Li
and Snavely 2018c]) and for inverse rendering (InverseRenderNet
[Yu and Smith 2019]). Our key insight is that merging the two
shape estimates from these complimentary techniques, using a
variant of the method of Nehab et al. [2005], yields high quality
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Figure 2: Overview of our proposed process for merging depth predictions and inverse rendering results for novel view syn-

thesis.

geometry that can be re-lit using the albedo estimated by the inverse
rendering network. In the remainder of the paper, we begin by
introducing necessary notation, review the depth estimation and
inverse rendering networks, describe the merging process and then
present our results.

4 PERSPECTIVE GEOMETRY

We begin by introducing required notations and concepts from sin-
gle view perspective geometry. We work in the coordinate system
of the camera and parameterise the scene by the unknown depth
function Z(u), where u = (x, y) is a location in the image. The 3D
coordinate at u is given by:

o)
P = | 0 7). 1)
Z(u)

where f is the focal length of the camera and (xj, yo) is the principal
point.
The tangent vectors to the surface are given by:
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Note that these tangent vectors are linear functions of the surface
depth.

The direction of the outward pointing surface normal is defined
as the cross product of the tangent vectors, themselves the partial
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Figure 3: Sample output from MegaDepth [Li and Snavely
2018c¢]. Dark is closer to viewer.

derivatives of the position function:
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where k is an arbitrary scale factor. Note that the magnitude of the
surface normal vector is not important, only its direction. Also note
that linearly scaling the depth function does not change the direc-
tion of the surface normal vector. We denote by fi(u) = n(u)/||n(u)]|,
the unit length surface normal.

5 SINGLE IMAGE DEPTH ESTIMATION

The goal of single image depth estimation is to compute a depth
value, Z(u), for each pixel in the image, collectively known as a
depth map. Note that from (1), this cannot be transformed into
positions in world units without knowing camera calibration infor-
mation. In low accuracy applications, the principal point is usually
assumed to be the centre of the image and we make this assumption.
The focal length however is typically unknown. However, often a
good estimate can be made from image metadata and a database of
sensor sizes. We take this approach allowing us to assume the focal
length is known. However, estimating absolute depth from a monoc-
ular image is highly ambiguous. For this reason, depth prediction
networks usually estimate depth only up to an unknown global



CVMP 2019, Dec. 17-18, London, UK

‘;
e

Input Albedo Normal Lighting » Sﬂading
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Smith 2019].

scale s > 0 such that Z(u) = sZ(u). This does not affect the surface
normals and hence the merging process described later. However,
for the purposes of computing scene geometry for rendering an
absolute scale must be chosen and we leave this as a parameter for
the user to select.

We use the depth predication network of Li and Snavely [2018c]
(known as MegaDepth). This is trained in a supervised fashion
using depth maps computed from scene geometry recovered using
multiview stereo applied to community photo collections. The su-
pervised training loss function is scale invariant so that the output
scale of the depth map is arbitrary as discussed above. We show
sample output in Figure 3.

6 SINGLE IMAGE INVERSE RENDERING

We use the inverse rendering network of Yu and Smith [2019] (re-
ferred to as InverseRenderNet). This is an image to image network
that predicts surface normal and albedo maps from which opti-
mal lighting (spherical harmonic coefficients) can be computed
in closed form using linear least squares. The network is trained
using a rather complex combination of partial direct supervision
and self supervision. Again, the training data is based on multiview
stereo models. This geometry provides direct supervision for the
surface normal estimation and enables cross projection between
views. This allows a loss measuring the consistency of photometric
invariants (albedo) between views with different lighting. There
is also a self supervised rendering loss which requires that the re-
rendered image is close to the original and various priors to ensure
stable training.

InverseRenderNet directly predicts two components of the sur-
face normal, nj(u) and na(u), such that the surface normal direction
is given by nrN(u) = [n1(u), na(u), 1]7. This avoids the need for
any camera calibration information in the subsequent use of the
surface normal vectors for rendering. We show sample output in
Figure 4.

7 MERGING DEPTH AND NORMALS

Our process for merging surface normal and depth map is based
on that of Nehab et al. [2005]. However, we include the centre of
projection in our derivation and provide an explicit matrix formu-
lation, decomposing the original formulation in terms of matrices
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for computing tangent vectors, numerical derivatives and dot prod-
ucts. This makes reproducing our approach much more straight-
forward and we make a Matlab implementation publicly available
(https://github.com/waps101/MergePositionNormals). Unlike Ne-
hab et al. [2005], we do not begin by removing low frequency bias
from the estimated surface normals. In practice, we do not find that
the surface normals delivered by InverseRenderNet are subject to
low frequency bias in the same way that normals from photometric
methods could be. We believe this is because of the direct normal
map supervision during training.

The approach of Nehab et al. [2005] is to form a linear sys-
tem of equations in the merged depth that seeks to satisfy two
constraints. The first seeks to preserve the gross structure of the
original estimated depth map by penalising in a least squares sense
any deviations. The second seeks to encourage the surface normals
of the refined depth map to align with the target normals. The key
observation is that this second error function can be formulated to
be linear in the surface depth. This is achieved by encouraging the
tangent vectors of the refined surface to be perpendicular to the
target normals, i.e., have a zero dot product.

First, we extend (2) and (3) to the whole image. Consider an
image with N foreground pixels whose unknown depth values are
vectorised in z € RN, We define matrices:

=X —1 X ONXN
5 U Dy 5 —i(
Ty = TY ONXN gk Ty = Y =1
I Onxn

such that tangent vectors for the whole image concatenated into a
vector can be computed by post-multiplication with the vector of
depth values:

— OP(u1)
Tyz = vec ([B_xl

T
Tyzzvec([%;ll) %:N) ), (7)

where Iis the N X N identity matrix and X = diag(xj —xo, ..., XN —
x0) and Y = diag(y1 — yo, .. .,YN — o). Dx,Dy € RNXN compute
numerical approximations to the derivative of Z in the x and y
directions respectively. In practice, we use forward finite differences.
Hence Dy, Dy have two non-zero values per row.

We are now ready to write the linear system of equations:

T
OP(un)
2], ©

AL .
NTy |z = OMD , (3)
NTy 2N %1

where zyp € RN contains the coarse depth estimates delivered by
MegaDepth and

' T
diag (nf‘RN(m), cees nfRN(UN))

N = |diag (nlyRN(ul)’ .. .,nIyRN(uN)) , 9)
diag (nIzRN(u1), cee, nIZRN(uN))

is a N X 3N matrix formed by concatenating diagonal matrices
containing the x, y and z components of the target normals deliv-
ered by InverseRenderNet. Hence, each row contains one of the
target surface normal vectors. The linear system of equations in
(8) is large but sparse and can be solved efficiently. We do so using
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Figure 5: Results of applying our method to images from the MegaDepth dataset [Li and Snavely 2018c]. Col. 1: input image.
Col. 2 and 3: albedo and surface normal maps estimated by InverseRenderNet [Yu and Smith 2019]. Col. 4: rendering of the

geometry provided by the depth prediction network. Col. 5: refined geometry after merging with the surface normals. Col. 6
and 7: novel views under two different lighting conditions.
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a QR solver as implemented in Matlab’s mldivide function. The
parameter A balances the influence of the two constraints. When 4
is large, the refined depth will stay close to the original estimate.
When it is small, the surface normals have greater influence.

8 EXPERIMENTS

The overview in Figure 2 shows an example output from MegaDepth
and InverseRenderNet. The striking feature is how the depth pre-
diction is significantly improved when merged with the surface
normal estimates. We show further results in Figure 5 for uncon-
trolled outdoor scenes. Here, we render the geometry as a mesh
(by triangulating the depth map). Again, it is evident that the ge-
ometry is much improved, adding detail but also correcting gross
structures. The textured models provide plausible appearance under
large illumination and viewpoint changes.

9 CONCLUSIONS

In this paper we have presented an approach to combine the benefits
of two recent advances in computer vision: deep single image depth
estimation and deep single image inverse rendering. Using a simple
techniques based on classical geometry and optimisation to merge
the depth and normal maps, we obtain high quality geometry from
a single image under demanding conditions. These models can be
used for novel view synthesis.

We believe this is only a first step in an exciting direction. The
most obvious future work is to train the two networks simultane-
ously. Since the merging process involves only the solution of a
linear least squares system, this could be done within the network
during training. Alternatively, one could consider estimating only
depth but using inverse rendering losses such that the surface nor-
mals of the depth map better capture high frequency detail. This
would require a method for estimating calibration parameters how-
ever. Another obvious direction would be to introduce adversarial
networks to enhance the quality of the synthesised views. Clearly,
our results lack background and sky which a GAN may be able to
synthesise realistically, while retaining semantic control over the
pose and lighting of the scene.
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