A Hierarchical Loss for Semantic Segmentation

Abstract

We exploit knowledge of class hierarchies to aid the training of semantic segmentation convolutional neural networks. We do not modify the architecture of the network itself, but rather propose to compute a loss that is a summation of classification losses at different levels of class abstraction. This allows the network to differentiate serious errors (the wrong superclass) from minor errors (correct superclass but incorrect finescale class) and to learn visual features that are shared between classes that belong to the same superclass. The method is straightforward to implement (we provide a PyTorch implementation that can be used with any existing semantic segmentation network) and we show that it yields performance improvements (faster convergence, better mean Intersection over Union) relative to training with a flat class hierarchy and the same network architecture. We provide results for the Helen facial and Mapillary Vistas road-scene segmentation datasets.

Publication
In International Conference on Computer Vision Theory and Applications 2020
Avatar
Bruce Muller
Research Trainee
Avatar
Will Smith
Professor in Computer Vision