Height from Photometric Ratio with Model-based Light Source Selection

Abstract

In this paper, we present a photometric stereo algorithm for estimating surface height. We follow recent work that uses photometric ratios to obtain a linear formulation relating surface gradients and image intensity. Using smoothed finite difference approximations for the surface gradient, we are able to express surface height recovery as a linear least squares problem that is large but sparse. In order to make the method practically useful, we combine it with a model-based approach that excludes observations which deviate from the assumptions made by the image formation model. Despite its simplicity, we show that our algorithm provides surface height estimates of a high quality even for objects with highly non-Lambertian appearance. We evaluate the method on both synthetic images with ground truth and challenging real images that contain strong specular reflections and cast shadows.

Publication
In Computer Vision and Image Understanding
Avatar
Will Smith
Professor in Computer Vision